Cargando…

Inverse and ill-posed problems : theory and applications /

The text demonstrates the methods for proving the existence (if et all) and finding of inverse and ill-posed problems solutions in linear algebra, integral and operator equations, integral geometry, spectral inverse problems, and inverse scattering problems. It is given comprehensive background mate...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kabanikhin, S. I.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 2011.
Colección:Inverse and ill-posed problems series ; v. 55.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn772845127
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 120116s2011 gw a ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d YDXCP  |d N$T  |d OCLCQ  |d OCLCF  |d DEBSZ  |d OCLCQ  |d E7B  |d IDEBK  |d DEBBG  |d OCLCQ  |d AGLDB  |d AZK  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d DEGRU  |d VTS  |d ICG  |d OCLCQ  |d TKN  |d STF  |d LEAUB  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ 
019 |a 785776523  |a 961565169  |a 988458757  |a 988521453  |a 992037295 
020 |a 9783110224016  |q (electronic bk.) 
020 |a 3110224011  |q (electronic bk.) 
020 |a 3110224003 
020 |a 9783110224009 
020 |z 9783110224009  |q (alk. paper) 
029 1 |a AU@  |b 000051449648 
029 1 |a CHBIS  |b 010396555 
029 1 |a CHVBK  |b 331228122 
029 1 |a DEBBG  |b BV042347712 
029 1 |a DEBBG  |b BV043075759 
029 1 |a DEBBG  |b BV044160830 
029 1 |a DEBSZ  |b 372904084 
029 1 |a DEBSZ  |b 397221568 
029 1 |a DEBSZ  |b 400456028 
029 1 |a DEBSZ  |b 421457511 
029 1 |a DEBSZ  |b 478279558 
029 1 |a NZ1  |b 14973261 
035 |a (OCoLC)772845127  |z (OCoLC)785776523  |z (OCoLC)961565169  |z (OCoLC)988458757  |z (OCoLC)988521453  |z (OCoLC)992037295 
050 4 |a QA378.5  |b .K33 2011eb 
072 7 |a MAT  |x 007000  |2 bisacsh 
082 0 4 |a 515.357  |2 23 
084 |a 65-02  |a 65M32  |a 65N20  |a 65N21  |2 msc 
084 |a SK 950  |2 rvk  |0 (DE-625)rvk/143273: 
049 |a UAMI 
100 1 |a Kabanikhin, S. I. 
245 1 0 |a Inverse and ill-posed problems :  |b theory and applications /  |c Sergey I. Kabanikhin. 
260 |a Berlin :  |b De Gruyter,  |c 2011. 
300 |a 1 online resource (xv, 475 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Inverse and ill-posed problems series ;  |v 55 
504 |a Includes bibliographical references and index. 
505 0 |a Preface; Denotations; 1 Basic concepts and examples; 1.1 On the definition of inverse and ill-posed problems; 1.2 Examples of inverse and ill-posed problems; 2 Ill-posed problems; 2.1 Well-posed and ill-posed problems; 2.2 On stability in different spaces; 2.3 Quasi-solution. The Ivanov theorems; 2.4 The Lavrentiev method; 2.5 The Tikhonov regularization method; 2.6 Gradient methods; 2.7 An estimate of the convergence rate with respect to the objective functional; 2.8 Conditional stability estimate and strong convergence of gradient methods applied to ill-posed problems. 
505 8 |a 2.9 The pseudoinverse and the singular value decomposition of an operator3 Ill-posed problems of linear algebra; 3.1 Generalization of the concept of a solution. Pseudo-solutions; 3.2 Regularization method; 3.3 Criteria for choosing the regularization parameter; 3.4 Iterative regularization algorithms; 3.5 Singular value decomposition; 3.6 The singular value decomposition algorithm and the Godunov method; 3.7 The square root method; 3.8 Exercises; 4 Integral equations; 4.1 Fredholm integral equations of the first kind; 4.2 Regularization of linear Volterra integral equations of the first kind. 
505 8 |a 4.3 Volterra operator equations with boundedly Lipschitz-continuous kernel4.4 Local well-posedness and uniqueness on the whole; 4.5 Well-posedness in a neighborhood of the exact solution; 4.6 Regularization of nonlinear operator equations of the first kind; 5 Integral geometry; 5.1 The Radon problem; 5.2 Reconstructing a function from its spherical means; 5.3 Determining a function of a single variable from the values of its integrals. The problem of moments; 5.4 Inverse kinematic problem of seismology; 6 Inverse spectral and scattering problems. 
505 8 |a 6.1 Direct Sturm-Liouville problem on a finite interval6.2 Inverse Sturm-Liouville problems on a finite interval; 6.3 The Gelfand-Levitan method on a finite interval; 6.4 Inverse scattering problems; 6.5 Inverse scattering problems in the time domain; 7 Linear problems for hyperbolic equations; 7.1 Reconstruction of a function from its spherical means; 7.2 The Cauchy problem for a hyperbolic equation with data on a time-like surface; 7.3 The inverse thermoacoustic problem; 7.4 Linearized multidimensional inverse problem for the wave equation; 8 Linear problems for parabolic equations. 
505 8 |a 8.1 On the formulation of inverse problems for parabolic equations and their relationship with the corresponding inverse problems for hyperbolic equations8.2 Inverse problem of heat conduction with reverse time (retrospective inverse problem); 8.3 Inverse boundary-value problems and extension problems; 8.4 Interior problems and problems of determining sources; 9 Linear problems for elliptic equations; 9.1 The uniqueness theorem and a conditional stability estimate on a plane. 
500 |a 9.2 Formulation of the initial boundary value problem for the Laplace equation in the form of an inverse problem. Reduction to an operator equation. 
520 |a The text demonstrates the methods for proving the existence (if et all) and finding of inverse and ill-posed problems solutions in linear algebra, integral and operator equations, integral geometry, spectral inverse problems, and inverse scattering problems. It is given comprehensive background material for linear ill-posed problems and for coefficient inverse problems for hyperbolic, parabolic, and elliptic equations. A lot of examples for inverse problems from physics, geophysics, biology, medicine, and other areas of application of mathematics are included. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Inverse problems (Differential equations) 
650 0 |a Boundary value problems  |x Improperly posed problems. 
650 6 |a Problèmes inverses (Équations différentielles) 
650 6 |a Problèmes aux limites  |x Problèmes mal posés. 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Boundary value problems  |x Improperly posed problems.  |2 fast  |0 (OCoLC)fst00837126 
650 7 |a Inverse problems (Differential equations)  |2 fast  |0 (OCoLC)fst00978098 
776 0 8 |i Print version:  |a Kabanikhin, S I.  |t Inverse and Ill-posed Problems : Theory and Applications.  |d Berlin : De Gruyter, ©2011  |z 9783110224009 
830 0 |a Inverse and ill-posed problems series ;  |v v. 55. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=430031  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25309357 
938 |a De Gruyter  |b DEGR  |n 9783110224016 
938 |a EBL - Ebook Library  |b EBLB  |n EBL835416 
938 |a ebrary  |b EBRY  |n ebr10527901 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28650952 
938 |a YBP Library Services  |b YANK  |n 7349039 
994 |a 92  |b IZTAP