Cargando…

The finite element method : an introduction with partial differential equations /

The finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Davies, Alan J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : OUP Oxford, 2011.
Edición:[2nd ed.].
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn772845035
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 120116s2011 enka ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d N$T  |d YDXCP  |d COD  |d OCLCQ  |d OCLCO  |d DEBSZ  |d OCLCQ  |d CDX  |d OCLCF  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d U3W  |d OCLCQ  |d VTS  |d CEF  |d ICG  |d INT  |d OCLCQ  |d TKN  |d OCLCQ  |d STF  |d DKC  |d UMR  |d OCLCQ  |d M8D  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 775420382 
020 |a 9780191630330  |q (electronic bk.) 
020 |a 0191630330  |q (electronic bk.) 
029 1 |a AU@  |b 000054143820 
029 1 |a DEBBG  |b BV043075631 
029 1 |a DEBBG  |b BV044160809 
029 1 |a DEBSZ  |b 379326086 
029 1 |a DEBSZ  |b 424611902 
029 1 |a DEBSZ  |b 445994126 
029 1 |a DEBSZ  |b 47258684X 
029 1 |a NZ1  |b 14243823 
029 1 |a AU@  |b 000073064966 
035 |a (OCoLC)772845035  |z (OCoLC)775420382 
050 4 |a TA347.F5 D38 2011 
072 7 |a MAT  |x 041000  |2 bisacsh 
082 0 4 |a 518.25  |a 518/.25 
084 |a SK 910  |2 rvk 
049 |a UAMI 
100 1 |a Davies, Alan J. 
245 1 4 |a The finite element method :  |b an introduction with partial differential equations /  |c A.J. Davies. 
250 |a [2nd ed.]. 
260 |a Oxford :  |b OUP Oxford,  |c 2011. 
300 |a 1 online resource (308 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Contents; 1 Historical introduction; 2 Weighted residual and variational methods; 2.1 Classification of differential operators; 2.2 Self-adjoint positive definite operators; 2.3 Weighted residual methods; 2.4 Extremum formulation: homogeneous boundary conditions; 2.5 Non-homogeneous boundary conditions; 2.6 Partial differential equations: natural boundary conditions; 2.7 The Rayleigh-Ritz method; 2.8 The 'elastic analogy' for Poisson's equation; 2.9 Variational methods for time-dependent problems; 2.10 Exercises and solutions; 3 The finite element method for elliptic problems. 
505 8 |a 3.1 Difficulties associated with the application of weighted residual methods3.2 Piecewise application of the Galerkin method; 3.3 Terminology; 3.4 Finite element idealization; 3.5 Illustrative problem involving one independent variable; 3.6 Finite element equations for Poisson's equation; 3.7 A rectangular element for Poisson's equation; 3.8 A triangular element for Poisson's equation; 3.9 Exercises and solutions; 4 Higher-order elements: the isoparametric concept; 4.1 A two-point boundary-value problem; 4.2 Higher-order rectangular elements; 4.3 Higher-order triangular elements. 
505 8 |a 4.4 Two degrees of freedom at each node4.5 Condensation of internal nodal freedoms; 4.6 Curved boundaries and higher-order elements: isoparametric elements; 4.7 Exercises and solutions; 5 Further topics in the finite element method; 5.1 The variational approach; 5.2 Collocation and least squares methods; 5.3 Use of Galerkin's method for time-dependent and non-linear problems; 5.4 Time-dependent problems using variational principles which are not extremal; 5.5 The Laplace transform; 5.6 Exercises and solutions; 6 Convergence of the finite element method; 6.1 A one-dimensional example. 
505 8 |a 6.2 Two-dimensional problems involving Poisson's equation6.3 Isoparametric elements: numerical integration; 6.4 Non-conforming elements: the patch test; 6.5 Comparison with the finite difference method: stability; 6.6 Exercises and solutions; 7 The boundary element method; 7.1 Integral formulation of boundary-value problems; 7.2 Boundary element idealization for Laplace's equation; 7.3 A constant boundary element for Laplace's equation; 7.4 A linear element for Laplace's equation; 7.5 Time-dependent problems; 7.6 Exercises and solutions; 8 Computational aspects; 8.1 Pre-processor. 
505 8 |a 8.2 Solution phase8.3 Post-processor; 8.4 Finite element method (FEM) or boundary element method (BEM)?; Appendix A: Partial differential equation models in the physical sciences; A.1 Parabolic problems; A.2 Elliptic problems; A.3 Hyperbolic problems; A.4 Initial and boundary conditions; Appendix B: Some integral theorems of the vector calculus; Appendix C: A formula for integrating products of area coordinates over a triangle; Appendix D: Numerical integration formulae; D.1 One-dimensional Gauss quadrature; D.2 Two-dimensional Gauss quadrature; D.3 Logarithmic Gauss quadrature. 
500 |a Appendix E: Stehfest's formula and weights for numerical Laplace transform inversion. 
520 |a The finite element method is a technique for solving problems in applied science and engineering. The essence of this book is the application of the finite element method to the solution of boundary and initial-value problems posed in terms of partial differential equations. The method is developed for the solution of Poisson's equation, in a weighted-residual context, and then proceeds to time-dependent and nonlinear problems. The relationship with the variational approach is also explained. This book is written at an introductory level, developing all the necessary concepts where required. Co. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Finite element method. 
650 6 |a Méthode des éléments finis. 
650 7 |a MATHEMATICS  |x Numerical Analysis.  |2 bisacsh 
650 7 |a Finite element method  |2 fast 
776 0 8 |i Print version:  |a Davies, A.J.  |t Finite Element Method : An Introduction with Partial Differential Equations.  |d Oxford : OUP Oxford, ©2011  |z 9780199609130 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=421507  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 20689469  |c 29.99 GBP 
938 |a EBL - Ebook Library  |b EBLB  |n EBL834727 
938 |a EBSCOhost  |b EBSC  |n 421507 
938 |a YBP Library Services  |b YANK  |n 7348977 
994 |a 92  |b IZTAP