Stochastic processes /
"This comprehensive guide to stochastic processes gives a complete overview of the theory and addresses the most important applications. Pitched at a level accessible to beginning graduate students and researchers from applied disciplines, it is both a course book and a rich resource for indivi...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
2011.
|
Colección: | Cambridge series on statistical and probabilistic mathematics ;
33. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Basic notions
- 2. Brownian motion
- 3. Martingales
- 4. Markov properties of Brownian motion
- 5. The Poisson process
- 6. Construction of Brownian motion
- 7. Path properties of Brownian motion
- 8. The continuity of paths
- 9. Continuous semimartingales
- 10. Stochastic integrals
- 11. Itô's formula
- 12. Some applications of Itô's formula
- 13. The Girsanov theorem
- 14. Local times
- 15. Skorokhod embedding
- 16. The general theory of processes
- 17. Processes with jumps
- 18. Poisson point processes
- 19. Framework for Markov processes
- 20. Markov properties
- 21. Applications of the Markov properties
- 22. Transformations of Markov processes
- 23. Optimal stopping
- 24. Stochastic differential equations
- 25. Weak solutions of SDEs
- 26. The Ray-Knight theorems
- 27. Brownian excursions
- 28. Financial mathematics
- 29. Filtering
- 30. Convergence of probability measures
- 31. Skorokhod representation
- 32. The space C[0, 1]
- 33. Gaussian processes
- 34. The space D[0, 1]
- 35. Applications of weak convergence
- 36. Semigroups
- 37. Infinitesimal generators
- 38. Dirichlet forms
- 39. Markov processes and SDEs
- 40. Solving partial differential equations
- 41. One-dimensional diffusions
- 42. Lévy processes
- Appendices: A. Basic probability; B. Some results from analysis; C. Regular conditional probabilities; D. Kolmogorov extension theorem.