Cargando…

Symmetries and Integrability of Difference Equations.

A comprehensive introduction to and survey of the state of the art, suitable for graduate students and researchers alike.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Levi, D. (Decio)
Otros Autores: Olver, Peter, Thomova, Zora, Winternitz, Pavel
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2011.
Colección:London Mathematical Society Lecture Note Series, 381.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_ocn769341701
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 111226s2011 enk ob 000 0 eng d
010 |z  2011006852 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d IDEBK  |d OCLCO  |d OCLCQ  |d AUD  |d OCLCO  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCF  |d N$T  |d E7B  |d YDXCP  |d UIU  |d REDDC  |d CDX  |d CAMBR  |d OCLCQ  |d UAB  |d OCLCQ  |d INT  |d AU@  |d OCLCQ  |d LUN  |d OCLCQ  |d UKAHL  |d SFB  |d OCLCO  |d OCLCQ  |d INARC 
066 |c (S 
019 |a 761284101  |a 768770690  |a 796932298  |a 1167958293  |a 1273989356  |a 1292398660  |a 1300451889  |a 1392023199 
020 |a 9781139117098 
020 |a 1139117092 
020 |a 9781139127752  |q (electronic bk.) 
020 |a 1139127756  |q (electronic bk.) 
020 |a 9780511997136  |q (electronic bk.) 
020 |a 0511997132  |q (electronic bk.) 
020 |a 1139114921  |q (electronic bk.) 
020 |a 9781139114929  |q (electronic bk.) 
020 |z 9780521136587 
020 |z 052113658X 
020 |a 1280776099 
020 |a 9781280776090 
020 |a 1139122835 
020 |a 9781139122832 
020 |a 9786613686480 
020 |a 6613686484 
020 |a 1139112732 
020 |a 9781139112734 
029 1 |a AU@  |b 000057022694 
029 1 |a DEBSZ  |b 372895271 
029 1 |a DEBSZ  |b 379323206 
029 1 |a AU@  |b 000070114515 
035 |a (OCoLC)769341701  |z (OCoLC)761284101  |z (OCoLC)768770690  |z (OCoLC)796932298  |z (OCoLC)1167958293  |z (OCoLC)1273989356  |z (OCoLC)1292398660  |z (OCoLC)1300451889  |z (OCoLC)1392023199 
050 4 |a QA431 .S952 2011 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.625  |a 515/.625 
049 |a UAMI 
100 1 |a Levi, D.  |q (Decio) 
245 1 0 |a Symmetries and Integrability of Difference Equations. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (362 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society Lecture Note Series, 381 ;  |v v. 381 
505 0 |a Cover; Title; Copyright; Contents; List of figures; List of contributors; Preface; Introduction; 1 Lagrangian and Hamiltonian Formalism for Discrete Equations: Symmetries and First Integrals V. orodnitsyn and R. Kozlov; Abstract; 1.1 Introduction; 1.2 Invariance of Euler-Lagrange equations; 1.3 Lagrangian formalism for second-order difference equations; 1.4 Hamiltonian formalism for differential equations; 1.4.1 Canonical Hamiltonian equations; 1.4.2 The Legendre transformation; 1.4.3 Invariance of canonical Hamiltonian equations; 1.5 Discrete Hamiltonian formalism. 
505 8 |a 1.5.1 Discrete Legendre transform1.5.2 Variational formulation of the discrete Hamiltonian equations; 1.5.3 Symplecticity of the discrete Hamiltonian equations; 1.5.4 Invariance of the Hamiltonian action; 1.5.5 Discrete Hamiltonian identity and discrete Noether theorem; 1.5.6 Invariance of the discrete Hamiltonian equations; 1.6 Examples; 1.6.1 Nonlinear motion; 1.6.2 A nonlinear ODE; 1.6.3 Discrete harmonic oscillator; 1.6.4 Modified discrete harmonic oscillator (exact scheme); 1.7 Conclusion; Acknowledgments; References. 
505 8 |a 2 Painlevé Equations: Continuous, Discrete and Ultradiscrete B. Grammaticos and A. RamaniAbstract; 2.1 Introduction; 2.2 A rough sketch of the top-down description of the Painlevé equations; The Hamiltonian formulation of Painlevé equations; 2.3 A succinct presentation of the bottom-up description of the Painlevé equations; Derivation of continuous Painlevé equations; 2.4 Properties of the, continuous and discrete, Painlevé equations: a parallel presentation; 2.4.1 Degeneration cascade; 2.4.2 Lax pairs; 2.4.3 Miura and Bäcklund relations; 2.4.4 Particular solutions; 2.4.5 Contiguity relations. 
505 8 |a 2.5 The ultradiscrete Painlevé equations2.5.1 Degeneration cascade; 2.5.2 Lax pairs; 2.5.3 Miura and Bäcklund relations; 2.5.4 Particular solutions; 2.5.5 Contiguity relations; 2.6 Conclusion; References; 3 Definitions and Predictions of Integrability for Difference Equations J. Hietarinta; Abstract; 3.1 Preliminaries; 3.1.1 Points of view on integrability; 3.1.2 Preliminaries on discreteness and discrete integrability; 3.2 Conserved quantities; 3.2.1 Constants of motion for continuous ODE; 3.2.2 The standard discrete case; 3.2.3 The Hirota-Kimura-Yahagi (HKY) generalization. 
505 8 |a 3.3 Singularity confinement and algebraic entropy3.3.1 Singularity analysis for difference equations; 3.3.2 Singularity confinement in projective space; 3.3.3 Singularity confinement is not sufficient; 3.4 Integrability in 2D; 3.4.1 Definitions and examples; 3.4.2 Quadrilateral lattices; 3.4.3 Continuum limit; 3.4.4 Conservation laws; 3.5 Singularity confinement in 2D; 3.6 Algebraic entropy for 2D lattices; 3.6.1 Default growth of degree and factorization; 3.6.2 Search based on factorization; 3.7 Consistency around a cube; 3.7.1 Definition; 3.7.2 Lax pair; 3.7.3 CAC as a search method. 
500 |a 3.8 Soliton solutions. 
520 |a A comprehensive introduction to and survey of the state of the art, suitable for graduate students and researchers alike. 
588 0 |a Print version record. 
504 |a Includes bibliographical references. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Difference equations. 
650 0 |a Symmetry (Mathematics) 
650 0 |a Integrals. 
650 6 |a Équations aux différences. 
650 6 |a Symétrie (Mathématiques) 
650 6 |a Intégrales. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Difference equations.  |2 fast  |0 (OCoLC)fst00893419 
650 7 |a Integrals.  |2 fast  |0 (OCoLC)fst00975518 
650 7 |a Symmetry (Mathematics)  |2 fast  |0 (OCoLC)fst01739417 
700 1 |a Olver, Peter. 
700 1 |a Thomova, Zora. 
700 1 |a Winternitz, Pavel. 
776 0 8 |i Print version:  |a Levi, Decio.  |t Symmetries and Integrability of Difference Equations.  |d Cambridge : Cambridge University Press, ©2011  |z 9780521136587 
830 0 |a London Mathematical Society Lecture Note Series, 381. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399282  |z Texto completo 
880 0 0 |6 505-00/(S  |g Machine generated contents note:  |g 1.  |t Lagrangian and Hamiltonian Formalism for Discrete Equations: Symmetries and First Integrals /  |r R. Kozlov --  |g 1.1.  |t Introduction --  |g 1.2.  |t Invariance of Euler-Lagrange equations --  |g 1.3.  |t Lagrangian formalism for second-order difference equations --  |g 1.4.  |t Hamiltonian formalism for differential equations --  |g 1.4.1.  |t Canonical Hamiltonian equations --  |g 1.4.2.  |t Legendre transformation --  |g 1.4.3.  |t Invariance of canonical Hamiltonian equations --  |g 1.5.  |t Discrete Hamiltonian formalism --  |g 1.5.1.  |t Discrete Legendre transform --  |g 1.5.2.  |t Variational formulation of the discrete Hamiltonian equations --  |g 1.5.3.  |t Symplecticity of the discrete Hamiltonian equations --  |g 1.5.4.  |t Invariance of the Hamiltonian action --  |g 1.5.5.  |t Discrete Hamiltonian identity and discrete Noether theorem --  |g 1.5.6.  |t Invariance of the discrete Hamiltonian equations --  |g 1.6.  |t Examples --  |g 1.6.1.  |t Nonlinear motion --  |g 1.6.2.  |t nonlinear ODE --  |g 1.6.3.  |t Discrete harmonic oscillator --  |g 1.6.4.  |t Modified discrete harmonic oscillator (exact scheme) --  |g 1.7.  |t Conclusion --  |g 2.  |t Painleve Equations: Continuous, Discrete and Ultradiscrete /  |r A. Ramani --  |g 2.1.  |t Introduction --  |g 2.2.  |t rough sketch of the top-down description of the Painleve equations --  |g 2.3.  |t succinct presentation of the bottom-up description of the Painleve equations --  |g 2.4.  |t Properties of the, continuous and discrete, Painleve equations: a parallel presentation --  |g 2.4.1.  |t Degeneration cascade --  |g 2.4.2.  |t Lax pairs --  |g 2.4.3.  |t Miura and Backlund relations --  |g 2.4.4.  |t Particular solutions --  |g 2.4.5.  |t Contiguity relations --  |g 2.5.  |t ultradiscrete Painleve equations --  |g 2.5.1.  |t Degeneration cascade --  |g 2.5.2.  |t Lax pairs --  |g 2.5.3.  |t Miura and Backlund relations --  |g 2.5.4.  |t Particular solutions --  |g 2.5.5.  |t Contiguity relations --  |g 2.6.  |t Conclusion --  |g 3.  |t Definitions and Predictions of Integrability for Difference Equations /  |r J. Hietarinta --  |g 3.1.  |t Preliminaries --  |g 3.1.1.  |t Points of view on integrability --  |g 3.1.2.  |t Preliminaries on discreteness and discrete integrability --  |g 3.2.  |t Conserved quantities --  |g 3.2.1.  |t Constants of motion for continuous ODE --  |g 3.2.2.  |t standard discrete case --  |g 3.2.3.  |t Hirota-Kimura-Yahagi (HKY) generalization --  |g 3.3.  |t Singularity confinement and algebraic entropy --  |g 3.3.1.  |t Singularity analysis for difference equations --  |g 3.3.2.  |t Singularity confinement in projective space --  |g 3.3.3.  |t Singularity confinement is not sufficient --  |g 3.4.  |t Integrability in 2D --  |g 3.4.1.  |t Definitions and examples --  |g 3.4.2.  |t Quadrilateral lattices --  |g 3.4.3.  |t Continuum limit --  |g 3.4.4.  |t Conservation laws --  |g 3.5.  |t Singularity confinement in 2D --  |g 3.6.  |t Algebraic entropy for 2D lattices --  |g 3.6.1.  |t Default growth of degree and factorization --  |g 3.6.2.  |t Search based on factorization --  |g 3.7.  |t Consistency around a cube --  |g 3.7.1.  |t Definition --  |g 3.7.2.  |t Lax pair --  |g 3.7.3.  |t CAC as a search method --  |g 3.8.  |t Soliton solutions --  |g 3.8.1.  |t Background solutions --  |g 3.8.2.  |t 1SS --  |g 3.8.3.  |t NSS --  |g 3.9.  |t Conclusions --  |g 4.  |t Orthogonal Polynomials, their Recursions, and Functional Equations /  |r M.E.H. Ismail --  |g 4.1.  |t Introduction --  |g 4.2.  |t Orthogonal polynomials --  |g 4.3.  |t spectral theorem --  |g 4.4.  |t Freud nonlinear recursions --  |g 4.5.  |t Differential equations --  |g 4.6.  |t q-difference equations --  |g 4.7.  |t inverse problem --  |g 4.8.  |t Applications --  |g 4.9.  |t Askey-Wilson polynomials --  |g 5.  |t Discrete Painleve Equations and Orthogonal Polynomials /  |r A. Its --  |g 5.1.  |t General setting --  |g 5.1.1.  |t Orthogonal polynomials --  |g 5.1.2.  |t Connections to integrable systems --  |g 5.1.3.  |t Riemann-Hilbert representation of the orthogonal polynomials --  |g 5.1.4.  |t Discrete Painleve equations --  |g 5.2.  |t Examples --  |g 5.2.1.  |t Gaussian weight --  |g 5.2.2.  |t d-Painleve I --  |g 5.2.3.  |t d-Painleve XXXIV --  |g 6.  |t Generalized Lie Symmetries for Difference Equations /  |r R.I. Yamilov --  |g 6.1.  |t Introduction --  |g 6.1.1.  |t Direct construction of generalized symmetries: an example --  |g 6.2.  |t Generalized symmetries from the integrability properties --  |g 6.2.1.  |t Toda Lattice --  |g 6.2.2.  |t symmetry algebra for the Toda Lattice --  |g 6.2.3.  |t continuous limit of the Toda symmetry algebras --  |g 6.2.4.  |t Backlund transformations for the Toda equation --  |g 6.2.5.  |t Backlund transformations vs. generalized symmetries --  |g 6.2.6.  |t Generalized symmetries for PδE's --  |g 6.3.  |t Formal symmetries and integrable lattice equations --  |g 6.3.1.  |t Formal symmetries and further integrability conditions --  |g 6.3.2.  |t Why integrable equations on the lattice must be symmetric --  |g 6.3.3.  |t Example of classification problem --  |g 7.  |t Four Lectures on Discrete Systems /  |r S.P. Novikov --  |g 7.1.  |t Introduction --  |g 7.2.  |t Discrete symmetries and completely integrable systems --  |g 7.3.  |t Discretization of linear operators --  |g 7.4.  |t Discrete GLn connections and triangle equation --  |g 7.5.  |t New discretization of complex analysis --  |g 8.  |t Lectures on Moving Frames /  |r P.J. Olver --  |g 8.1.  |t Introduction --  |g 8.2.  |t Equivariant moving frames --  |g 8.3.  |t Moving frames on jet space and differential invariants --  |g 8.4.  |t Equivalence and signatures --  |g 8.5.  |t Joint invariants and joint differential invariants --  |g 8.6.  |t Invariant numerical approximations --  |g 8.7.  |t invariant bicomplex --  |g 8.8.  |t Generating differential invariants --  |g 8.9.  |t Invariant variational problems --  |g 8.10.  |t Invariant curve flows --  |g 9.  |t Lattices of Compact Semisimple Lie Groups /  |r J. Patera --  |g 9.1.  |t Introduction --  |g 9.2.  |t Motivating example --  |g 9.3.  |t Simple Lie groups and simple Lie algebras --  |g 9.3.1.  |t Simple roots --  |g 9.3.2.  |t Standard bases in Rn --  |g 9.3.3.  |t Reflections and affine reflections in Rn --  |g 9.3.4.  |t Weyl group and Affine Weyl group --  |g 9.4.  |t Lattice grids FM [⊂] F [⊂] Rn --  |g 9.4.1.  |t Examples of FM --  |g 9.5.  |t W-invariant functions orthogonal on FM --  |g 9.6.  |t Properties of elements of finite order --  |g 10.  |t Lectures on Discrete Differential Geometry /  |r Yu. B Suris --  |g 10.1.  |t Basic notions --  |g 10.2.  |t Backlund transformations --  |g 10.3.  |t Q-nets --  |g 10.4.  |t Circular nets --  |g 10.5.  |t Q-nets in quadrics --  |g 10.6.  |t T-nets --  |g 10.7.  |t A-nets --  |g 10.8.  |t T-nets in quadrics --  |g 10.9.  |t K-nets --  |g 10.10.  |t Hirota equation for K-nets --  |g 11.  |t Symmetry Preserving Discretization of Differential Equations and Lie Point Symmetries of Differential-Difference Equations /  |r P. 
880 0 0 |6 505-00/(S  |t Winternitz --  |g 11.1.  |t Symmetry preserving discretization of ODEs --  |g 11.1.1.  |t Formulation of the problem --  |g 11.1.2.  |t Lie point symmetries of ordinary difference schemes --  |g 11.1.3.  |t continuous limit --  |g 11.2.  |t Examples of symmetry preserving discretizations --  |g 11.2.1.  |t Equations invariant under SL1(2, R) --  |g 11.2.2.  |t Equations invariant under SL2(2, R) --  |g 11.2.3.  |t Equations invariant under the similitude group of the Euclidean plane --  |g 11.3.  |t Applications to numerical solutions of ODEs --  |g 11.3.1.  |t General procedure for testing the numerical schemes --  |g 11.3.2.  |t Numerical experiments for a third-order ODE invariant under SL1(2, R) --  |g 11.3.3.  |t Numerical experiments for ODEs invariant under SL2(2, R) --  |g 11.3.4.  |t Numerical experiments for third-order ODE invariant under Sim(2) --  |g 11.4.  |t Exact solutions of invariant difference schemes --  |g 11.4.1.  |t Lagrangian formulation for second-order ODEs --  |g 11.4.2.  |t Lagrangian formulation for second order difference equations --  |g 11.4.3.  |t Example: Second-order ODE with three-dimensional solvable symmetry algebra --  |g 11.5.  |t Lie point symmetries of differential-difference equations --  |g 11.5.1.  |t Formulation of the problem --  |g 11.5.2.  |t evolutionary formalism and commuting flows for differential equations --  |g 11.5.3.  |t evolutionary formalism and commuting flows for differential-difference equations --  |g 11.5.4.  |t General algorithm for calculating Lie point symmetries of a differential-difference equation --  |g 11.5.5.  |t Theorems simplifying the calculation of symmetries of DδE --  |g 11.5.6.  |t Volterra type equations and their generalizations --  |g 11.5.7.  |t Toda type equations --  |g 11.5.8.  |t Toda field theory type equations --  |g 11.6.  |t Examples of symmetries of DδE --  |g 11.6.1.  |t YdKN equation --  |g 11.6.2.  |t Toda lattice. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13438962 
938 |a Coutts Information Services  |b COUT  |n 22772753 
938 |a EBL - Ebook Library  |b EBLB  |n EBL774948 
938 |a ebrary  |b EBRY  |n ebr10502773 
938 |a EBSCOhost  |b EBSC  |n 399282 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 368648 
938 |a YBP Library Services  |b YANK  |n 7205444 
938 |a YBP Library Services  |b YANK  |n 6967684 
938 |a YBP Library Services  |b YANK  |n 7302889 
938 |a YBP Library Services  |b YANK  |n 7319566 
938 |a Internet Archive  |b INAR  |n symmetriesintegr0000unse 
994 |a 92  |b IZTAP