|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBSCO_ocn769341701 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
111226s2011 enk ob 000 0 eng d |
010 |
|
|
|z 2011006852
|
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d IDEBK
|d OCLCO
|d OCLCQ
|d AUD
|d OCLCO
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCF
|d N$T
|d E7B
|d YDXCP
|d UIU
|d REDDC
|d CDX
|d CAMBR
|d OCLCQ
|d UAB
|d OCLCQ
|d INT
|d AU@
|d OCLCQ
|d LUN
|d OCLCQ
|d UKAHL
|d SFB
|d OCLCO
|d OCLCQ
|d INARC
|
066 |
|
|
|c (S
|
019 |
|
|
|a 761284101
|a 768770690
|a 796932298
|a 1167958293
|a 1273989356
|a 1292398660
|a 1300451889
|a 1392023199
|
020 |
|
|
|a 9781139117098
|
020 |
|
|
|a 1139117092
|
020 |
|
|
|a 9781139127752
|q (electronic bk.)
|
020 |
|
|
|a 1139127756
|q (electronic bk.)
|
020 |
|
|
|a 9780511997136
|q (electronic bk.)
|
020 |
|
|
|a 0511997132
|q (electronic bk.)
|
020 |
|
|
|a 1139114921
|q (electronic bk.)
|
020 |
|
|
|a 9781139114929
|q (electronic bk.)
|
020 |
|
|
|z 9780521136587
|
020 |
|
|
|z 052113658X
|
020 |
|
|
|a 1280776099
|
020 |
|
|
|a 9781280776090
|
020 |
|
|
|a 1139122835
|
020 |
|
|
|a 9781139122832
|
020 |
|
|
|a 9786613686480
|
020 |
|
|
|a 6613686484
|
020 |
|
|
|a 1139112732
|
020 |
|
|
|a 9781139112734
|
029 |
1 |
|
|a AU@
|b 000057022694
|
029 |
1 |
|
|a DEBSZ
|b 372895271
|
029 |
1 |
|
|a DEBSZ
|b 379323206
|
029 |
1 |
|
|a AU@
|b 000070114515
|
035 |
|
|
|a (OCoLC)769341701
|z (OCoLC)761284101
|z (OCoLC)768770690
|z (OCoLC)796932298
|z (OCoLC)1167958293
|z (OCoLC)1273989356
|z (OCoLC)1292398660
|z (OCoLC)1300451889
|z (OCoLC)1392023199
|
050 |
|
4 |
|a QA431 .S952 2011
|
072 |
|
7 |
|a PBKJ
|2 bicssc
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.625
|a 515/.625
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Levi, D.
|q (Decio)
|
245 |
1 |
0 |
|a Symmetries and Integrability of Difference Equations.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (362 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society Lecture Note Series, 381 ;
|v v. 381
|
505 |
0 |
|
|a Cover; Title; Copyright; Contents; List of figures; List of contributors; Preface; Introduction; 1 Lagrangian and Hamiltonian Formalism for Discrete Equations: Symmetries and First Integrals V. orodnitsyn and R. Kozlov; Abstract; 1.1 Introduction; 1.2 Invariance of Euler-Lagrange equations; 1.3 Lagrangian formalism for second-order difference equations; 1.4 Hamiltonian formalism for differential equations; 1.4.1 Canonical Hamiltonian equations; 1.4.2 The Legendre transformation; 1.4.3 Invariance of canonical Hamiltonian equations; 1.5 Discrete Hamiltonian formalism.
|
505 |
8 |
|
|a 1.5.1 Discrete Legendre transform1.5.2 Variational formulation of the discrete Hamiltonian equations; 1.5.3 Symplecticity of the discrete Hamiltonian equations; 1.5.4 Invariance of the Hamiltonian action; 1.5.5 Discrete Hamiltonian identity and discrete Noether theorem; 1.5.6 Invariance of the discrete Hamiltonian equations; 1.6 Examples; 1.6.1 Nonlinear motion; 1.6.2 A nonlinear ODE; 1.6.3 Discrete harmonic oscillator; 1.6.4 Modified discrete harmonic oscillator (exact scheme); 1.7 Conclusion; Acknowledgments; References.
|
505 |
8 |
|
|a 2 Painlevé Equations: Continuous, Discrete and Ultradiscrete B. Grammaticos and A. RamaniAbstract; 2.1 Introduction; 2.2 A rough sketch of the top-down description of the Painlevé equations; The Hamiltonian formulation of Painlevé equations; 2.3 A succinct presentation of the bottom-up description of the Painlevé equations; Derivation of continuous Painlevé equations; 2.4 Properties of the, continuous and discrete, Painlevé equations: a parallel presentation; 2.4.1 Degeneration cascade; 2.4.2 Lax pairs; 2.4.3 Miura and Bäcklund relations; 2.4.4 Particular solutions; 2.4.5 Contiguity relations.
|
505 |
8 |
|
|a 2.5 The ultradiscrete Painlevé equations2.5.1 Degeneration cascade; 2.5.2 Lax pairs; 2.5.3 Miura and Bäcklund relations; 2.5.4 Particular solutions; 2.5.5 Contiguity relations; 2.6 Conclusion; References; 3 Definitions and Predictions of Integrability for Difference Equations J. Hietarinta; Abstract; 3.1 Preliminaries; 3.1.1 Points of view on integrability; 3.1.2 Preliminaries on discreteness and discrete integrability; 3.2 Conserved quantities; 3.2.1 Constants of motion for continuous ODE; 3.2.2 The standard discrete case; 3.2.3 The Hirota-Kimura-Yahagi (HKY) generalization.
|
505 |
8 |
|
|a 3.3 Singularity confinement and algebraic entropy3.3.1 Singularity analysis for difference equations; 3.3.2 Singularity confinement in projective space; 3.3.3 Singularity confinement is not sufficient; 3.4 Integrability in 2D; 3.4.1 Definitions and examples; 3.4.2 Quadrilateral lattices; 3.4.3 Continuum limit; 3.4.4 Conservation laws; 3.5 Singularity confinement in 2D; 3.6 Algebraic entropy for 2D lattices; 3.6.1 Default growth of degree and factorization; 3.6.2 Search based on factorization; 3.7 Consistency around a cube; 3.7.1 Definition; 3.7.2 Lax pair; 3.7.3 CAC as a search method.
|
500 |
|
|
|a 3.8 Soliton solutions.
|
520 |
|
|
|a A comprehensive introduction to and survey of the state of the art, suitable for graduate students and researchers alike.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Difference equations.
|
650 |
|
0 |
|a Symmetry (Mathematics)
|
650 |
|
0 |
|a Integrals.
|
650 |
|
6 |
|a Équations aux différences.
|
650 |
|
6 |
|a Symétrie (Mathématiques)
|
650 |
|
6 |
|a Intégrales.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Difference equations.
|2 fast
|0 (OCoLC)fst00893419
|
650 |
|
7 |
|a Integrals.
|2 fast
|0 (OCoLC)fst00975518
|
650 |
|
7 |
|a Symmetry (Mathematics)
|2 fast
|0 (OCoLC)fst01739417
|
700 |
1 |
|
|a Olver, Peter.
|
700 |
1 |
|
|a Thomova, Zora.
|
700 |
1 |
|
|a Winternitz, Pavel.
|
776 |
0 |
8 |
|i Print version:
|a Levi, Decio.
|t Symmetries and Integrability of Difference Equations.
|d Cambridge : Cambridge University Press, ©2011
|z 9780521136587
|
830 |
|
0 |
|a London Mathematical Society Lecture Note Series, 381.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399282
|z Texto completo
|
880 |
0 |
0 |
|6 505-00/(S
|g Machine generated contents note:
|g 1.
|t Lagrangian and Hamiltonian Formalism for Discrete Equations: Symmetries and First Integrals /
|r R. Kozlov --
|g 1.1.
|t Introduction --
|g 1.2.
|t Invariance of Euler-Lagrange equations --
|g 1.3.
|t Lagrangian formalism for second-order difference equations --
|g 1.4.
|t Hamiltonian formalism for differential equations --
|g 1.4.1.
|t Canonical Hamiltonian equations --
|g 1.4.2.
|t Legendre transformation --
|g 1.4.3.
|t Invariance of canonical Hamiltonian equations --
|g 1.5.
|t Discrete Hamiltonian formalism --
|g 1.5.1.
|t Discrete Legendre transform --
|g 1.5.2.
|t Variational formulation of the discrete Hamiltonian equations --
|g 1.5.3.
|t Symplecticity of the discrete Hamiltonian equations --
|g 1.5.4.
|t Invariance of the Hamiltonian action --
|g 1.5.5.
|t Discrete Hamiltonian identity and discrete Noether theorem --
|g 1.5.6.
|t Invariance of the discrete Hamiltonian equations --
|g 1.6.
|t Examples --
|g 1.6.1.
|t Nonlinear motion --
|g 1.6.2.
|t nonlinear ODE --
|g 1.6.3.
|t Discrete harmonic oscillator --
|g 1.6.4.
|t Modified discrete harmonic oscillator (exact scheme) --
|g 1.7.
|t Conclusion --
|g 2.
|t Painleve Equations: Continuous, Discrete and Ultradiscrete /
|r A. Ramani --
|g 2.1.
|t Introduction --
|g 2.2.
|t rough sketch of the top-down description of the Painleve equations --
|g 2.3.
|t succinct presentation of the bottom-up description of the Painleve equations --
|g 2.4.
|t Properties of the, continuous and discrete, Painleve equations: a parallel presentation --
|g 2.4.1.
|t Degeneration cascade --
|g 2.4.2.
|t Lax pairs --
|g 2.4.3.
|t Miura and Backlund relations --
|g 2.4.4.
|t Particular solutions --
|g 2.4.5.
|t Contiguity relations --
|g 2.5.
|t ultradiscrete Painleve equations --
|g 2.5.1.
|t Degeneration cascade --
|g 2.5.2.
|t Lax pairs --
|g 2.5.3.
|t Miura and Backlund relations --
|g 2.5.4.
|t Particular solutions --
|g 2.5.5.
|t Contiguity relations --
|g 2.6.
|t Conclusion --
|g 3.
|t Definitions and Predictions of Integrability for Difference Equations /
|r J. Hietarinta --
|g 3.1.
|t Preliminaries --
|g 3.1.1.
|t Points of view on integrability --
|g 3.1.2.
|t Preliminaries on discreteness and discrete integrability --
|g 3.2.
|t Conserved quantities --
|g 3.2.1.
|t Constants of motion for continuous ODE --
|g 3.2.2.
|t standard discrete case --
|g 3.2.3.
|t Hirota-Kimura-Yahagi (HKY) generalization --
|g 3.3.
|t Singularity confinement and algebraic entropy --
|g 3.3.1.
|t Singularity analysis for difference equations --
|g 3.3.2.
|t Singularity confinement in projective space --
|g 3.3.3.
|t Singularity confinement is not sufficient --
|g 3.4.
|t Integrability in 2D --
|g 3.4.1.
|t Definitions and examples --
|g 3.4.2.
|t Quadrilateral lattices --
|g 3.4.3.
|t Continuum limit --
|g 3.4.4.
|t Conservation laws --
|g 3.5.
|t Singularity confinement in 2D --
|g 3.6.
|t Algebraic entropy for 2D lattices --
|g 3.6.1.
|t Default growth of degree and factorization --
|g 3.6.2.
|t Search based on factorization --
|g 3.7.
|t Consistency around a cube --
|g 3.7.1.
|t Definition --
|g 3.7.2.
|t Lax pair --
|g 3.7.3.
|t CAC as a search method --
|g 3.8.
|t Soliton solutions --
|g 3.8.1.
|t Background solutions --
|g 3.8.2.
|t 1SS --
|g 3.8.3.
|t NSS --
|g 3.9.
|t Conclusions --
|g 4.
|t Orthogonal Polynomials, their Recursions, and Functional Equations /
|r M.E.H. Ismail --
|g 4.1.
|t Introduction --
|g 4.2.
|t Orthogonal polynomials --
|g 4.3.
|t spectral theorem --
|g 4.4.
|t Freud nonlinear recursions --
|g 4.5.
|t Differential equations --
|g 4.6.
|t q-difference equations --
|g 4.7.
|t inverse problem --
|g 4.8.
|t Applications --
|g 4.9.
|t Askey-Wilson polynomials --
|g 5.
|t Discrete Painleve Equations and Orthogonal Polynomials /
|r A. Its --
|g 5.1.
|t General setting --
|g 5.1.1.
|t Orthogonal polynomials --
|g 5.1.2.
|t Connections to integrable systems --
|g 5.1.3.
|t Riemann-Hilbert representation of the orthogonal polynomials --
|g 5.1.4.
|t Discrete Painleve equations --
|g 5.2.
|t Examples --
|g 5.2.1.
|t Gaussian weight --
|g 5.2.2.
|t d-Painleve I --
|g 5.2.3.
|t d-Painleve XXXIV --
|g 6.
|t Generalized Lie Symmetries for Difference Equations /
|r R.I. Yamilov --
|g 6.1.
|t Introduction --
|g 6.1.1.
|t Direct construction of generalized symmetries: an example --
|g 6.2.
|t Generalized symmetries from the integrability properties --
|g 6.2.1.
|t Toda Lattice --
|g 6.2.2.
|t symmetry algebra for the Toda Lattice --
|g 6.2.3.
|t continuous limit of the Toda symmetry algebras --
|g 6.2.4.
|t Backlund transformations for the Toda equation --
|g 6.2.5.
|t Backlund transformations vs. generalized symmetries --
|g 6.2.6.
|t Generalized symmetries for PδE's --
|g 6.3.
|t Formal symmetries and integrable lattice equations --
|g 6.3.1.
|t Formal symmetries and further integrability conditions --
|g 6.3.2.
|t Why integrable equations on the lattice must be symmetric --
|g 6.3.3.
|t Example of classification problem --
|g 7.
|t Four Lectures on Discrete Systems /
|r S.P. Novikov --
|g 7.1.
|t Introduction --
|g 7.2.
|t Discrete symmetries and completely integrable systems --
|g 7.3.
|t Discretization of linear operators --
|g 7.4.
|t Discrete GLn connections and triangle equation --
|g 7.5.
|t New discretization of complex analysis --
|g 8.
|t Lectures on Moving Frames /
|r P.J. Olver --
|g 8.1.
|t Introduction --
|g 8.2.
|t Equivariant moving frames --
|g 8.3.
|t Moving frames on jet space and differential invariants --
|g 8.4.
|t Equivalence and signatures --
|g 8.5.
|t Joint invariants and joint differential invariants --
|g 8.6.
|t Invariant numerical approximations --
|g 8.7.
|t invariant bicomplex --
|g 8.8.
|t Generating differential invariants --
|g 8.9.
|t Invariant variational problems --
|g 8.10.
|t Invariant curve flows --
|g 9.
|t Lattices of Compact Semisimple Lie Groups /
|r J. Patera --
|g 9.1.
|t Introduction --
|g 9.2.
|t Motivating example --
|g 9.3.
|t Simple Lie groups and simple Lie algebras --
|g 9.3.1.
|t Simple roots --
|g 9.3.2.
|t Standard bases in Rn --
|g 9.3.3.
|t Reflections and affine reflections in Rn --
|g 9.3.4.
|t Weyl group and Affine Weyl group --
|g 9.4.
|t Lattice grids FM [⊂] F [⊂] Rn --
|g 9.4.1.
|t Examples of FM --
|g 9.5.
|t W-invariant functions orthogonal on FM --
|g 9.6.
|t Properties of elements of finite order --
|g 10.
|t Lectures on Discrete Differential Geometry /
|r Yu. B Suris --
|g 10.1.
|t Basic notions --
|g 10.2.
|t Backlund transformations --
|g 10.3.
|t Q-nets --
|g 10.4.
|t Circular nets --
|g 10.5.
|t Q-nets in quadrics --
|g 10.6.
|t T-nets --
|g 10.7.
|t A-nets --
|g 10.8.
|t T-nets in quadrics --
|g 10.9.
|t K-nets --
|g 10.10.
|t Hirota equation for K-nets --
|g 11.
|t Symmetry Preserving Discretization of Differential Equations and Lie Point Symmetries of Differential-Difference Equations /
|r P.
|
880 |
0 |
0 |
|6 505-00/(S
|t Winternitz --
|g 11.1.
|t Symmetry preserving discretization of ODEs --
|g 11.1.1.
|t Formulation of the problem --
|g 11.1.2.
|t Lie point symmetries of ordinary difference schemes --
|g 11.1.3.
|t continuous limit --
|g 11.2.
|t Examples of symmetry preserving discretizations --
|g 11.2.1.
|t Equations invariant under SL1(2, R) --
|g 11.2.2.
|t Equations invariant under SL2(2, R) --
|g 11.2.3.
|t Equations invariant under the similitude group of the Euclidean plane --
|g 11.3.
|t Applications to numerical solutions of ODEs --
|g 11.3.1.
|t General procedure for testing the numerical schemes --
|g 11.3.2.
|t Numerical experiments for a third-order ODE invariant under SL1(2, R) --
|g 11.3.3.
|t Numerical experiments for ODEs invariant under SL2(2, R) --
|g 11.3.4.
|t Numerical experiments for third-order ODE invariant under Sim(2) --
|g 11.4.
|t Exact solutions of invariant difference schemes --
|g 11.4.1.
|t Lagrangian formulation for second-order ODEs --
|g 11.4.2.
|t Lagrangian formulation for second order difference equations --
|g 11.4.3.
|t Example: Second-order ODE with three-dimensional solvable symmetry algebra --
|g 11.5.
|t Lie point symmetries of differential-difference equations --
|g 11.5.1.
|t Formulation of the problem --
|g 11.5.2.
|t evolutionary formalism and commuting flows for differential equations --
|g 11.5.3.
|t evolutionary formalism and commuting flows for differential-difference equations --
|g 11.5.4.
|t General algorithm for calculating Lie point symmetries of a differential-difference equation --
|g 11.5.5.
|t Theorems simplifying the calculation of symmetries of DδE --
|g 11.5.6.
|t Volterra type equations and their generalizations --
|g 11.5.7.
|t Toda type equations --
|g 11.5.8.
|t Toda field theory type equations --
|g 11.6.
|t Examples of symmetries of DδE --
|g 11.6.1.
|t YdKN equation --
|g 11.6.2.
|t Toda lattice.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13438962
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 22772753
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL774948
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10502773
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 399282
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 368648
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7205444
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 6967684
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7302889
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7319566
|
938 |
|
|
|a Internet Archive
|b INAR
|n symmetriesintegr0000unse
|
994 |
|
|
|a 92
|b IZTAP
|