|
|
|
|
LEADER |
00000cam a2200000 4500 |
001 |
EBSCO_ocn769341698 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
120907s2011 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d IDEBK
|d OCLCQ
|d AUD
|d OCLCO
|d DEBSZ
|d OCLCQ
|d OCLCF
|d N$T
|d E7B
|d CDX
|d YDXCP
|d REDDC
|d CAMBR
|d OCLCQ
|d HEBIS
|d OCLCO
|d OCLCQ
|d COCUF
|d STF
|d CUY
|d MERUC
|d ZCU
|d ICG
|d K6U
|d LOA
|d VT2
|d U3W
|d OCLCQ
|d WYU
|d LVT
|d TKN
|d DKC
|d AU@
|d OCLCQ
|d UKAHL
|d OCLCQ
|d A6Q
|d G3B
|d OCLCA
|d OCLCQ
|d UKCRE
|d AJS
|d OCLCO
|d OCLCQ
|d OCLCO
|d S9M
|
019 |
|
|
|a 759152343
|a 768770729
|a 817914054
|a 1043236367
|a 1043674355
|a 1066440255
|a 1076644973
|a 1081234083
|a 1152981216
|a 1153534665
|a 1167595490
|a 1228599240
|a 1264758457
|
020 |
|
|
|a 9781139117593
|
020 |
|
|
|a 1139117599
|
020 |
|
|
|a 9781139128254
|q (electronic bk.)
|
020 |
|
|
|a 1139128256
|q (electronic bk.)
|
020 |
|
|
|a 9781139115421
|
020 |
|
|
|a 1139115421
|
020 |
|
|
|a 9780511793837
|q (electronic bk.)
|
020 |
|
|
|a 0511793839
|q (electronic bk.)
|
020 |
|
|
|z 9781107005297
|
020 |
|
|
|z 1107005299
|
020 |
|
|
|z 9780521183017
|
020 |
|
|
|z 0521183014
|
024 |
8 |
|
|a 9786613298577
|
029 |
1 |
|
|a DEBSZ
|b 372705383
|
029 |
1 |
|
|a DEBSZ
|b 379323176
|
029 |
1 |
|
|a DEBSZ
|b 445571349
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999933579305765
|
035 |
|
|
|a (OCoLC)769341698
|z (OCoLC)759152343
|z (OCoLC)768770729
|z (OCoLC)817914054
|z (OCoLC)1043236367
|z (OCoLC)1043674355
|z (OCoLC)1066440255
|z (OCoLC)1076644973
|z (OCoLC)1081234083
|z (OCoLC)1152981216
|z (OCoLC)1153534665
|z (OCoLC)1167595490
|z (OCoLC)1228599240
|z (OCoLC)1264758457
|
037 |
|
|
|a 329857
|b MIL
|
050 |
|
4 |
|a QA177 .K56 2011
|
072 |
|
7 |
|a MAT
|x 014000
|2 bisacsh
|
082 |
0 |
4 |
|a 512.2
|a 512/.2
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Klopsch, Benjamin.
|
245 |
1 |
0 |
|a Lectures on Profinite Topics in Group Theory.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (160 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a London Mathematical Society Student Texts, 77 ;
|v v. 77
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title; Copyright; Contents; Preface; Editor's introduction; I An introduction to compact p-adic Lie groups; 1 Introduction; 2 From finite p-groups to compact p-adic Lie groups; 2.1 Nilpotent groups; 2.2 Finite p-groups; 2.3 Lie rings; 2.4 Applying Lie methods to groups; 2.5 Absolute values; 2.6 p-adic numbers; 2.7 p-adic integers; 2.8 Preview: p-adic analytic pro-p groups; 3 Basic notions and facts from point-set topology; 4 First series of exercises; 5 Powerful groups, profinite groups and pro-p groups; 5.1 Powerful finite p-groups; 5.2 Profinite groups as Galois groups.
|
505 |
8 |
|
|a 5.3 Profinite groups as inverse limits5.4 Profinite groups as profinite completions; 5.5 Profinite groups as topological groups; 5.6 Pro-p groups; 5.7 Powerful pro-p groups; 5.8 Pro-p groups of finite rank -- summary ofcharacterisations; 6 Second series of exercises; 7 Uniformly powerful pro-p groups and Zp-Lie lattices; 7.1 Uniformly powerful pro-p groups; 7.2 Associated additive structure; 7.3 Associated Lie structure; 7.4 The Hausdorff formula; 7.5 Applying the Hausdorff formula; 8 The group GLd(Zp), just-infinite pro-p groups and the Lie correspondence for saturable pro-p groups.
|
505 |
8 |
|
|a 8.1 The group GLd(Zp) -- an example8.2 Just-infinite pro-p groups; 8.3 Potent filtrations and saturable pro-p groups; 8.4 Lie correspondence; 9 Third series of exercises; 10 Representations of compact p-adic Lie groups; 10.1 Representation growth and Kirillov's orbit method; 10.2 The orbit method for saturable pro-p groups; 10.3 An application of the orbit method; References for Chapter I; II Strong approximation methods; 1 Introduction; 2 Algebraic groups; 2.1 The Zariski topology on Kn; 2.2 Linear algebraic groups as closed subgroups of GLn(K); Basic examples.
|
505 |
8 |
|
|a Basic properties of Algebraic groupsFields of definition and restriction of scalars; The Lie algebra of G; Connection with Lie algebras of locally compact topological groups; 2.3 Semisimple algebraic groups: the classification ofsimply connected algebraic groups over K; 2.4 Reductive groups; 2.5 Chevalley groups; 3 Arithmetic groups and the congruence topology; 3.1 Rings of algebraic integers in number fields; 3.2 The congruence topology on GLn(k) and GLn(O); Valuations of k; 3.3 Arithmetic groups; 4 The strong approximation theorem; 4.1 An aside: Serre's conjecture; 5 Lubotzky's alternative.
|
505 |
8 |
|
|a 6 Applications of Lubotzky's alternative6.1 The finite simple groups of Lie type; 6.2 Refinements; 6.3 Normal subgroups of linear groups; 6.4 Representations, sieves and expanders; 7 The Nori -- Weisfeiler theorem; 7.1 Unipotently generated subgroups of algebraic groups over finite fields; 8 Exercises; References for Chapter II; III A newcomer's guideto zeta functions of groups and rings; 1 Introduction; 1.1 Zeta functions of groups; 1.2 Zeta functions of rings; 1.3 Linearisation; 1.4 Organisation of the chapter; 2 Local and global zeta functions; 2.1 Rationality and variation with the prime.
|
500 |
|
|
|a 2.2 Flag varieties and Coxeter groups.
|
520 |
|
|
|a An introduction to three key aspects of current research in infinite group theory, suitable for graduate students.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Profinite groups.
|
650 |
|
0 |
|a Group theory.
|
650 |
|
6 |
|a Groupes profinis.
|
650 |
|
6 |
|a Théorie des groupes.
|
650 |
|
7 |
|a MATHEMATICS
|x Group Theory.
|2 bisacsh
|
650 |
|
7 |
|a Teoría de grupos
|2 embne
|
650 |
0 |
7 |
|a Grupos profinitos
|2 embucm
|
650 |
|
7 |
|a Group theory
|2 fast
|
650 |
|
7 |
|a Profinite groups
|2 fast
|
650 |
|
7 |
|a Gruppentheorie
|2 gnd
|
650 |
|
7 |
|a Proendliche Gruppe
|2 gnd
|
700 |
1 |
|
|a Nikolov, Nikolay.
|
700 |
1 |
|
|a Voll, Christopher.
|
700 |
1 |
|
|a Segal, Dan.
|
776 |
0 |
8 |
|i Print version:
|a Klopsch, Benjamin.
|t Lectures on Profinite Topics in Group Theory.
|d Cambridge : Cambridge University Press, ©2011
|z 9781107005297
|
830 |
|
0 |
|a London Mathematical Society Student Texts, 77.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399371
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24076318
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37562418
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH33230415
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 19726611
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL774944
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10502696
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 399371
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 329857
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9619676
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7205484
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7302927
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7319600
|
994 |
|
|
|a 92
|b IZTAP
|