Fluid mechanics : a short course for physicists /
"The multidisciplinary field of fluid mechanics is one of the most actively developing fields of physics, mathematics and engineering. In this book, the fundamental ideas of fluid mechanics are presented from a physics perspective. Using examples taken from everyday life, from hydraulic jumps i...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
2011.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title; Copyright; Contents; Preface; Prologue; 1 Basic equations and steady flows; 1.1 Definitions and basic equations; 1.1.1 Definitions; 1.1.2 Equations of motion for an ideal fluid; 1.1.3 Hydrostatics; 1.1.4 Isentropic motion; 1.2 Conservation laws and potential flows; 1.2.1 Kinematics; 1.2.2 Kelvin's theorem; 1.2.3 Energy and momentum fluxes; 1.2.4 Irrotational and incompressible flows; 1.3 Flow past a body; 1.3.1 Incompressible potential flow past a body; 1.3.2 Moving sphere; 1.3.3 Moving body of an arbitrary shape; 1.3.4 Quasi-momentum and induced mass; 1.4 Viscosity.
- 1.4.1 Reversibility paradox1.4.2 Viscous stress tensor; 1.4.3 Navier
- Stokes equation; 1.4.4 Law of similarity; 1.5 Stokes flow and the wake; 1.5.1 Slow motion; 1.5.2 The boundary layer and the separation phenomenon; 1.5.3 Flow transformations; 1.5.4 Drag and lift with a wake; Exercises; 2 Unsteady flows; 2.1 Instabilities; 2.1.1 Kelvin
- Helmholtz instability; 2.1.2 Energetic estimate of the stability threshold; 2.1.3 Landau's law; 2.2 Turbulence; 2.2.1 Cascade; 2.2.2 Turbulent river and wake; 2.3 Acoustics; 2.3.1 Sound; 2.3.2 Riemann wave; 2.3.3 Burgers equation; 2.3.4 Acoustic turbulence.
- 2.3.5 Mach numberExercises; 3 Dispersive waves; 3.1 Linear waves; 3.1.1 Surface gravity waves; 3.1.2 Viscous dissipation; 3.1.3 Capillary waves; 3.1.4 Phase and group velocity; 3.2 Weakly non-linear waves; 3.2.1 Hamiltonian description; 3.2.2 Hamiltonian normal forms; 3.2.3 Wave instabilities; 3.3 Non-linear Schrödinger equation (NSE); 3.3.1 Derivation of NSE; 3.3.2 Modulational instability; 3.3.3 Soliton, collapse and turbulence; 3.4 Korteveg
- de-Vries (KdV) equation; 3.4.1 Waves in shallow water; 3.4.2 The KdV equation and the soliton; 3.4.3 Inverse scattering transform; Exercises.
- 4 Solutions to exercisesChapter 1; Chapter 2; Chapter 3; Epilogue; Notes; Referenes; Index.