Cargando…

Greedy Approximation.

Provides the theoretical foundations for algorithms widely used in numerical mathematics. Includes classical results, as well as the latest advances.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Temlyakov, Vladimir
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2011.
Colección:Cambridge monographs on applied and computational mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 EBSCO_ocn763159240
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 111128s2011 enk ob 001 0 eng d
010 |z  2011025053 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d IDEBK  |d CDX  |d COO  |d YDXCP  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DEBSZ  |d OL$  |d OCLCQ  |d OCLCF  |d N$T  |d E7B  |d CAMBR  |d OCLCQ  |d S3O  |d OCLCQ  |d HEBIS  |d OCLCO  |d OCLCQ  |d COCUF  |d STF  |d LOA  |d CUY  |d MERUC  |d ZCU  |d ICG  |d K6U  |d VT2  |d YDX  |d U3W  |d OCLCQ  |d LVT  |d AU@  |d WYU  |d TKN  |d DKC  |d AGLDB  |d SNK  |d BTN  |d MHW  |d INTCL  |d AUW  |d OCLCQ  |d M8D  |d CEF  |d UX1  |d OCLCQ  |d G3B  |d OCLCA  |d OCLCQ  |d AJS  |d UKAHL  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO  |d S9M 
066 |c (S 
016 7 |a 015820965  |2 Uk 
019 |a 767579443  |a 773039084  |a 817930675  |a 853661223  |a 957302522  |a 1055321547  |a 1058878841  |a 1081225045  |a 1097123465  |a 1170663963  |a 1172209058  |a 1228603631  |a 1264819267  |a 1391557272 
020 |a 9781139159326 
020 |a 1139159321 
020 |a 1107003377 
020 |a 9781107003378 
020 |a 9780511762291  |q (electronic book) 
020 |a 0511762291  |q (electronic book) 
020 |a 9781139161374  |q (electronic bk.) 
020 |a 1139161377  |q (electronic bk.) 
020 |a 9781139157551  |q (electronic bk.) 
020 |a 1139157558  |q (electronic bk.) 
024 8 |a 9786613342430 
029 1 |a AU@  |b 000048846754 
029 1 |a DEBSZ  |b 379324741 
029 1 |a DEBSZ  |b 445572493 
035 |a (OCoLC)763159240  |z (OCoLC)767579443  |z (OCoLC)773039084  |z (OCoLC)817930675  |z (OCoLC)853661223  |z (OCoLC)957302522  |z (OCoLC)1055321547  |z (OCoLC)1058878841  |z (OCoLC)1081225045  |z (OCoLC)1097123465  |z (OCoLC)1170663963  |z (OCoLC)1172209058  |z (OCoLC)1228603631  |z (OCoLC)1264819267  |z (OCoLC)1391557272 
037 |a 334243  |b MIL 
050 4 |a QA221  |b .T455 2011eb 
072 7 |a MAT  |x 041000  |2 bisacsh 
082 0 4 |a 518.5 
084 |a MAT034000  |2 bisacsh 
049 |a UAMI 
100 1 |a Temlyakov, Vladimir. 
245 1 0 |a Greedy Approximation. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (434 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge Monographs on Applied and Computational Mathematics ;  |v v. 20 
505 0 |a Cover; CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS; 20 Greedy Approximation; Title; Copyright; Contents; Preface; 1 Greedy approximation with regard to bases; 1.1 Introduction; 1.2 Schauder bases in Banach spaces; 1.3 Greedy bases; 1.4 Quasi-greedy and almost greedy bases; 1.5 Weak Greedy Algorithms with respect to bases; 1.6 Thresholding and minimal systems; 1.7 Greedy approximation with respect to the trigonometric system; 1.8 Greedy-type bases; direct and inverse theorems; 1.9 Some further results; 1.10 Systems Lp-equivalent to the Haar basis; 1.11 Open problems. 
505 8 |a 2 Greedy approximation with respect to dictionaries: Hilbert spaces2.1 Introduction; 2.2 Convergence; 2.3 Rate of convergence; 2.3.1 Upper bounds for approximation by general dictionaries; 2.3.2 Upper estimates for weak-type greedy algorithms; 2.4 Greedy algorithms for systems that are not dictionaries; 2.5 Greedy approximation with respect to?-quasi-orthogonal dictionaries; 2.6 Lebesgue-type inequalities for greedy approximation; 2.6.1 Introduction; 2.6.2 Proofs; 2.7 Saturation property of greedy-type algorithms; 2.7.1 Saturation of the Pure Greedy Algorithm. 
505 8 |a 2.7.2 A generalization of the Pure Greedy Algorithm2.7.3 Performance of the n-Greedy Algorithm with regard to an incoherent dictionary; 2.8 Some further remarks; 2.9 Open problems; 3 Entropy; 3.1 Introduction: definitions and some simple properties; 3.2 Finite dimensional spaces; 3.3 Trigonometric polynomials and volume estimates; 3.3.1 Univariate trigonometric polynomials; 3.3.2 Multivariate trigonometric polynomials; The Dirichlet kernels.; The Fejér kernels.; The de la Vallée Poussin kernels.; The Rudin-Shapiro polynomials.; 3.3.3 Volume estimates; generalized Rudin-Shapiro polynomials. 
505 8 |a 3.4 The function classes3.5 General inequalities; 3.6 Some further remarks; 3.7 Open problems; 4 Approximation in learning theory; 4.1 Introduction; 4.1.1 Approximation theory; recovery of functions; 4.1.2 Statistics; regression theory; 4.1.3 Learning theory; 4.2 Some basic concepts of probability theory; 4.2.1 The measure theory and integration; 4.2.2 The concentration of measure inequalities; 4.2.3 The Kullback-Leibler information and the Hellinger distance; 4.3 Improper function learning; upper estimates; 4.3.1 Introduction; 4.3.2 First estimates for classes from Sr. 
505 8 |a 4.3.3 Further estimates for classes from Sr chaining technique; 4.3.4 Least squares estimators for convex hypothesis spaces; 4.3.5 Least squares estimators for non-convex hypothesis spaces; 4.3.6 Estimates for classes from Sr2; 4.3.7 Estimates for classes from Sr1; 4.4 Proper function learning; upper estimates; 4.4.1 Introduction; 4.4.2 The least squares estimators; 4.4.3 Some examples; 4.5 The lower estimates; 4.5.1 Introduction; 4.5.2 The projection learning; 4.5.3 Lower estimates for the Bernoulli scheme; 4.5.4 The proper function learning. 
500 |a 4.6 Application of greedy algorithms in learning theory. 
520 |a Provides the theoretical foundations for algorithms widely used in numerical mathematics. Includes classical results, as well as the latest advances. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Approximation theory. 
650 6 |a Théorie de l'approximation. 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 0 7 |a Aproximación, Teoría de  |2 embucm 
650 7 |a Approximation theory  |2 fast 
650 7 |a Greedy-Algorithmus  |2 gnd 
650 7 |a Approximationsalgorithmus  |2 gnd 
650 7 |a Nichtlineare Approximation  |2 gnd 
776 0 8 |i Print version:  |a Temlyakov, Vladimir.  |t Greedy Approximation.  |d Cambridge : Cambridge University Press, ©2011  |z 9781107003378 
830 0 |a Cambridge monographs on applied and computational mathematics. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=408976  |z Texto completo 
880 0 |6 505-00/(S  |a Cover -- CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS -- 20 Greedy Approximation -- Title -- Copyright -- Contents -- Preface -- 1 Greedy approximation with regard to bases -- 1.1 Introduction -- 1.2 Schauder bases in Banach spaces -- 1.3 Greedy bases -- 1.4 Quasi-greedy and almost greedy bases -- 1.5 Weak Greedy Algorithms with respect to bases -- 1.6 Thresholding and minimal systems -- 1.7 Greedy approximation with respect to the trigonometric system -- 1.8 Greedy-type bases -- direct and inverse theorems -- 1.9 Some further results -- 1.10 Systems Lp-equivalent to the Haar basis -- 1.11 Open problems -- 2 Greedy approximation with respect to dictionaries: Hilbert spaces -- 2.1 Introduction -- 2.2 Convergence -- 2.3 Rate of convergence -- 2.3.1 Upper bounds for approximation by general dictionaries -- 2.3.2 Upper estimates for weak-type greedy algorithms -- 2.4 Greedy algorithms for systems that are not dictionaries -- 2.5 Greedy approximation with respect to λ-quasi-orthogonal dictionaries -- 2.6 Lebesgue-type inequalities for greedy approximation -- 2.6.1 Introduction -- 2.6.2 Proofs -- 2.7 Saturation property of greedy-type algorithms -- 2.7.1 Saturation of the Pure Greedy Algorithm -- 2.7.2 A generalization of the Pure Greedy Algorithm -- 2.7.3 Performance of the n-Greedy Algorithm with regard to an incoherent dictionary -- 2.8 Some further remarks -- 2.9 Open problems -- 3 Entropy -- 3.1 Introduction: definitions and some simple properties -- 3.2 Finite dimensional spaces -- 3.3 Trigonometric polynomials and volume estimates -- 3.3.1 Univariate trigonometric polynomials -- 3.3.2 Multivariate trigonometric polynomials -- The Dirichlet kernels. -- The Fejér kernels. -- The de la Vallée Poussin kernels. -- The Rudin-Shapiro polynomials. -- 3.3.3 Volume estimates -- generalized Rudin-Shapiro polynomials. 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24076306 
938 |a Coutts Information Services  |b COUT  |n 20191810 
938 |a EBL - Ebook Library  |b EBLB  |n EBL807191 
938 |a ebrary  |b EBRY  |n ebr10514275 
938 |a EBSCOhost  |b EBSC  |n 408976 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 334243 
938 |a YBP Library Services  |b YANK  |n 7266406 
938 |a YBP Library Services  |b YANK  |n 7408075 
938 |a YBP Library Services  |b YANK  |n 9619644 
938 |a YBP Library Services  |b YANK  |n 7273228 
938 |a Internet Archive  |b INAR  |n greedyapproximat0000teml 
994 |a 92  |b IZTAP