Statistical Physics of Liquids at Freezing and Beyond.
An exploration of important theories for understanding freezing and the liquid-glass transition for graduate students and researchers.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2011.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title; Copyright; Decaition; Contents; Preface; Acknowledgements; 1 Statistical physics of liquids; 1.1 Basic statistical mechanics; 1.1.1 Thermodynamic functions; 1.1.2 The classical N-particle system; 1.1.3 The BBGKY hierarchy equations; 1.1.4 The Boltzmann equation; 1.2 Equilibrium properties; 1.2.1 The Gibbs H-theorem; 1.2.2 The equilibrium ensembles; 1.2.3 The static structure factor; 1.2.4 Integral equations for g(r); 1.3 Time correlation functions; 1.3.1 The density correlation function; 1.3.2 The self-correlation function; 1.3.3 The linear response function; 1.4 Brownian motion.
- 1.4.1 The Langevin equation1.4.2 The Stokes
- Einstein relation; Appendix to Chapter 1; A1.1 The Gibbs inequality; A1.2 The force
- force correlation; A1.3 Brownian motion; A1.3.1 The noise correlation; A1.3.2 Evaluation of the integrals; 2 The freezing transition; 2.1 The density-functional approach; 2.1.1 A thermodynamic extremum principle; 2.1.2 An approximate free-energy functional; 2.1.3 The Ramakrishnan
- Yussouff model; 2.2 Weighted density functionals; 2.2.1 The modified weighted-density approximation; 2.2.2 Gaussian density profiles; 2.2.3 The hard-sphere system.
- 2.3 Fundamental measure theory2.3.1 Density-independent weight functions; 2.3.2 The free-energy functional; 2.4 Applications to other systems; 2.4.1 Long-range interaction potentials; 2.4.2 The solid-liquid interface; Appendix to Chapter 2; A2.2 The Ramakrishnan
- Yussouff model; A2.3 The weighted-density-functional approximation; A2.4 The modified weighted-density-functional approximation; A2.5 The Gaussian density profiles and phonon model; 3 Crystal nucleation; 3.1 Classical nucleation theory; 3.1.1 The free-energy barrier; 3.1.2 The nucleation rate; 3.1.3 Heterogeneous nucleation.
- 3.2 A simple nonclassical model3.2.1 The critical nucleus; 3.2.2 The free-energy barrier; 3.3 The density-functional approach; 3.3.1 The square-gradient approximation; 3.3.2 The critical nucleus; 3.3.3 The weighted-density-functional approach; 3.4 Computer-simulation studies; 3.4.1 Comparisons with CNT predictions; 3.4.2 The structure of the nucleus; Appendix to Chapter 3; A3.1.2 The free-energy barrier; A3.2 The excess free energy in the DFT model; 4 The supercooled liquid; 4.1 The liquid
- glass transition; 4.1.1 Characteristic temperatures of the glassy state; 4.1.2 The free-volume model.
- 4.1.3 Self-diffusion and the Stokes
- Einstein relation4.2 Glass formation vs. crystallization; 4.2.1 The minimum cooling rate; 4.2.2 The kinetic spinodal and the Kauzmann paradox; 4.3 The landscape paradigm; 4.3.1 The potential-energy landscape; 4.3.2 The free-energy landscape; 4.4 Dynamical heterogeneities; 4.4.1 Computer-simulation results; 4.4.2 Dynamic length scales; 5 Dynamics of collective modes; 5.1 Conservation laws and dissipation; 5.1.1 The microscopic balance equations; 5.1.2 Euler equations of hydrodynamics; 5.1.3 Dissipative equations of hydrodynamics.