Stable Domination and Independence in Algebraically Closed Valued Fields.
This 2008 book presents research in model theory and its applications to valued fields.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2007.
|
Colección: | Lecture Notes in Logic, 30.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; PREFACE; Acknowledgments; CHAPTER 1 INTRODUCTION; PART 1 STABLE DOMINATION; CHAPTER 2 SOME BACKGROUND ON STABILITY THEORY; 2.1. Saturation, the universal domain, imaginaries; 2.2. Invariant types; 2.3. Conditions equivalent to stability; 2.4. Independence and forking; 2.5. Totally transcendental theories andMorley rank; 2.6. Prime models; 2.7. Indiscernibles, Morley sequences; 2.8. Stably embedded sets; CHAPTER 3 DEFINITION AND BASIC PROPERTIES OF StC; CHAPTER 4 INVARIANT TYPES AND CHANGE OF BASE; CHAPTER 5 A COMBINATORIAL LEMMA.
- CHAPTER 6 STRONG CODES FOR GERMSPART 2 INDEPENDENCE IN ACVF; CHAPTER 7 SOME BACKGROUND ON ALGEBRAICALLY CLOSED VALUED FIELDS; 7.1. Background on valued?elds; 7.2. Some model theory of valued?elds; 7.3. Basics of ACVF; 7.4. Imaginaries, and the ACVF sorts; 7.5. The sorts internal to the residue?eld; 7.6. Unary sets, 1-torsors, and generic 1-types; 7.7. One-types orthogonal to G; 7.8. Generic bases of lattices; CHAPTER 8 SEQUENTIAL INDEPENDENCE; CHAPTER 9 GROWTH OF THE STABLE PART; CHAPTER 10 TYPES ORTHOGONAL TO G; CHAPTER 11 OPACITY AND PRIME RESOLUTIONS.
- CHAPTER 12 MAXIMALLY COMPLETE FIELDS AND DOMINATIONCHAPTER 13 INVARIANT TYPES; 13.1. Examples of sequential independence; 13.2. Invariant types, dividing and sequential independence; CHAPTER 14 A MAXIMUMMODULUS PRINCIPLE; CHAPTER 15 CANONICAL BASES AND INDEPENDENCE GIVEN BY MODULES; CHAPTER 16 OTHER HENSELIAN FIELDS; REFERENCES; INDEX.