Cargando…

Bayesian time series models /

"'What's going to happen next?' Time series data hold the answers, and Bayesian methods represent the cutting edge in learning what they have to say. This ambitious book is the first unified treatment of the emerging knowledge-base in Bayesian time series techniques. Exploiting t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Barber, David, 1968-, Cemgil, Ali Taylan, Chiappa, Silvia
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press, 2011.
Colección:Cambridge books online.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn761399483
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 111118s2011 enka ob 001 0 eng
010 |z  2011008051 
040 |a CIT  |b eng  |e pn  |c CIT  |d YDXCP  |d OCLCQ  |d UIU  |d E7B  |d COO  |d OCLCO  |d DEBSZ  |d IDEBK  |d OCLCQ  |d N$T  |d EBLCP  |d AUD  |d CDX  |d OL$  |d OCLCF  |d OCLCQ  |d INT  |d OCLCQ  |d VLY  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 776951473  |a 782886121  |a 787852266  |a 796932857  |a 817124259  |a 819635961  |a 853659680  |a 865508590  |a 987662806  |a 1162083664 
020 |a 9780511984679  |q (electronic bk.) 
020 |a 0511984677  |q (electronic bk.) 
020 |a 1139091018 
020 |a 9781139091015 
020 |a 9781139092920  |q (electronic bk.) 
020 |a 1139092928  |q (electronic bk.) 
020 |a 9781139091909 
020 |a 1139091905 
020 |a 1280775939 
020 |a 9781280775932 
020 |z 9780521196765  |q (hardback) 
020 |z 0521196760  |q (hardback) 
020 |z 9781139091015 
020 |a 1107214769 
020 |a 9781107214767 
020 |a 1139092413 
020 |a 9781139092418 
020 |a 9786613686329 
020 |a 6613686328 
024 8 |a 9786613686329 
029 1 |a AU@  |b 000049145812 
029 1 |a AU@  |b 000052891230 
029 1 |a CHNEW  |b 000640264 
029 1 |a DEBSZ  |b 372879977 
029 1 |a DEBSZ  |b 379320614 
029 1 |a DEBSZ  |b 398875766 
029 1 |a DEBSZ  |b 445571101 
035 |a (OCoLC)761399483  |z (OCoLC)776951473  |z (OCoLC)782886121  |z (OCoLC)787852266  |z (OCoLC)796932857  |z (OCoLC)817124259  |z (OCoLC)819635961  |z (OCoLC)853659680  |z (OCoLC)865508590  |z (OCoLC)987662806  |z (OCoLC)1162083664 
050 4 |a QA280  |b .B39 2011eb 
072 7 |a UYQM  |2 bicssc 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.5/5  |2 22 
084 |a COM016000  |2 bisacsh 
049 |a UAMI 
245 0 0 |a Bayesian time series models /  |c edited by David Barber, A. Taylan Cemgil, Silvia Chiappa. 
260 |a Cambridge, UK ;  |a New York :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (xiii, 417 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 0 |g 1.  |t Inference and estimation in probabilistic time series models /  |r David Barber, A. Taylan Cemgil and Silvia Chiappa --  |g I.  |t Monte Carlo:  |g 2.  |t Adaptive Markov chain Monte Carlo: theory and methods /  |r Yves Atchadé, Gersende Fort, Eric Moulines and Pierre Priouret;  |g 3.  |t Auxiliary particle filtering: recent developments /  |r Nick Whiteley and Adam M. Johansen;  |g 4.  |t Monte Carlo probabilistic inference for diffusion processes: a methodological framework /  |r Omiros Papaspiliopoulos --  |g II.  |t Deterministic Approximations:  |g 5.  |t Two problems with variational expectation maximisation for time series models /  |r Richard Eric Turner and Maneesh Sahani;  |g 6.  |t Approximate inference for continuous-time Markov processes /  |r Cédric Archambeau and Manfred Opper;  |g 7.  |t Expectation propagation and generalised EP methods for inference in switching linear dynamical systems /  |r Onno Zoeter and Tom Heskes;  |g 8.  |t Approximate inference in switching linear dynamical systems using Gaussian mixtures /  |r David Barber --  |g III.  |t Switch Models:  |g 9.  |t Physiological monitoring with factorial switching linear dynamical systems /  |r John A. Quinn and Christopher K.I. Williams;  |g 10.  |t Analysis of changepoint models /  |r Idris A. Eckley, Paul Fearnhead and Rebecca Killick --  |g IV.  |t Multi-Object Models:  |g 11.  |t Approximate likelihood estimation of static parameters in multi-target models /  |r Sumeetpal S. Singh, Nick Whiteley and Simon J. Godsill;  |g 12.  |t Sequential inference for dynamically evolving groups of objects /  |r Sze Kim Pang, Simon J. Godsill, Jack Li, François Septier and Simon Hill;  |g 13.  |t Non-commutative harmonic analysis in multi-object tracking /  |r Risi Kondor --  |g V.  |t Nonparametric Models:  |g 14. Markov chain Monte Carlo algorithms for Gaussian processes /  |r Michalis K. Titsias, Magnus Rattray and Neil D. Lawrence;  |g 15.  |t Nonparametric hidden Markov models /  |r Jurgen Van Gael and Zoubin Ghahramani;  |g 16.  |t Bayesian Gaussian process models for multi-sensor time series prediction /  |r Michael A. Osborne, Alex Rogers, Stephen J. Roberts, Sarvapali D. Ramchurn and Nick R. Jennings --  |g VI.  |t Agent-Based Models:  |g 17. Optimal control theory and the linear Bellman equation /  |r Hilbert J. Kappen;  |g 18.  |t Expectation maximisation methods for solving (PO)MDPs and optimal control problems /  |r Marc Toussaint, Amos Storkey and Stefan Harmeling. 
520 |a "'What's going to happen next?' Time series data hold the answers, and Bayesian methods represent the cutting edge in learning what they have to say. This ambitious book is the first unified treatment of the emerging knowledge-base in Bayesian time series techniques. Exploiting the unifying framework of probabilistic graphical models, the book covers approximation schemes, both Monte Carlo and deterministic, and introduces switching, multi-object, non-parametric and agent-based models in a variety of application environments. It demonstrates that the basic framework supports the rapid creation of models tailored to specific applications and gives insight into the computational complexity of their implementation. The authors span traditional disciplines such as statistics and engineering and the more recently established areas of machine learning and pattern recognition. Readers with a basic understanding of applied probability, but no experience with time series analysis, are guided from fundamental concepts to the state-of-the-art in research and practice"--  |c Provided by publisher. 
520 |a "Time series appear in a variety of disciplines, from finance to physics, computer science to biology. The origins of the subject and diverse applications in the engineering and physics literature at times obscure the commonalities in the underlying models and techniques. A central aim of this book is an attempt to make modern time series techniques accessible to a broad range of researchers, based on the unifying concept of probabilistic models. These techniques facilitate access to the modern time series literature, including financial time series prediction, video-tracking, music analysis, control and genetic sequence analysis. A particular feature of the book is that it brings together leading researchers that span the more traditional disciplines of statistics, control theory, engineering and signal processing, to the more recent area machine learning and pattern recognition"--  |c Provided by publisher. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Time-series analysis. 
650 0 |a Bayesian statistical decision theory. 
650 6 |a Série chronologique. 
650 6 |a Théorie de la décision bayésienne. 
650 7 |a COMPUTERS  |x Computer Vision & Pattern Recognition.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a Time-series analysis  |2 fast 
700 1 |a Barber, David,  |d 1968- 
700 1 |a Cemgil, Ali Taylan. 
700 1 |a Chiappa, Silvia. 
776 0 8 |i Print version:  |t Bayesian time series models.  |d Cambridge, UK ; New York : Cambridge University Press, ©2011  |w (OCoLC)71081592 
830 0 |a Cambridge books online. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=369448  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13438727 
938 |a Coutts Information Services  |b COUT  |n 22772658 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL713021 
938 |a ebrary  |b EBRY  |n ebr10546244 
938 |a EBSCOhost  |b EBSC  |n 369448 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 368632 
938 |a YBP Library Services  |b YANK  |n 7580848 
938 |a YBP Library Services  |b YANK  |n 11421654 
938 |a YBP Library Services  |b YANK  |n 7568822 
938 |a YBP Library Services  |b YANK  |n 7113500 
994 |a 92  |b IZTAP