Cargando…

Random matrices : high dimensional phenomena /

This book focuses on the behaviour of large random matrices. Standard results are covered, and the presentation emphasizes elementary operator theory and differential equations, so as to be accessible to graduate students and other non-experts. The introductory chapters review material on Lie groups...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Blower, G. (Gordon) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2009.
Colección:London Mathematical Society lecture note series ; 367.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn759207756
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mn|||||||||
008 111101t20092009enk ob 001 0 eng d
010 |z  2010275269 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d E7B  |d REDDC  |d OCLCQ  |d YDXCP  |d OCLCQ  |d DEBSZ  |d CAMBR  |d OCLCQ  |d OL$  |d IDEBK  |d AUD  |d OCLCQ  |d OCLCF  |d OCLCQ  |d HEBIS  |d OCLCO  |d UAB  |d YDX  |d OCLCO  |d OSU  |d OCLCQ  |d INT  |d AU@  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d VLY  |d UKAHL  |d OCLCO  |d OCLCQ 
019 |a 775863492  |a 816866915  |a 817935600  |a 819630798  |a 853659721  |a 1162248898 
020 |a 9781139127547  |q (electronic bk.) 
020 |a 1139127543  |q (electronic bk.) 
020 |a 9781139107129  |q (electronic bk.) 
020 |a 1139107127  |q (electronic bk.) 
020 |z 9780521133128  |q (paperback) 
020 |z 0521133122  |q (paperback) 
020 |z 9781139114714 
020 |z 1139114719 
020 |z 9781283295864 
020 |z 1283295865 
020 |a 1107203619 
020 |a 9781107203617 
020 |a 1139122622 
020 |a 9781139122627 
020 |a 9786613295866 
020 |a 6613295868 
020 |a 1139116886 
020 |a 9781139116886 
029 1 |a AU@  |b 000062618310 
029 1 |a DEBSZ  |b 372889298 
029 1 |a AU@  |b 000069243291 
035 |a (OCoLC)759207756  |z (OCoLC)775863492  |z (OCoLC)816866915  |z (OCoLC)817935600  |z (OCoLC)819630798  |z (OCoLC)853659721  |z (OCoLC)1162248898 
050 4 |a QA188  |b .B568 2009eb 
072 7 |a MAT  |x 019000  |2 bisacsh 
072 7 |a PBF  |2 bicssc 
082 0 4 |a 512.9434  |2 22 
084 |a SI 320  |2 rvk 
084 |a SK 820  |2 rvk 
084 |a MAT 155f  |2 stub 
049 |a UAMI 
100 1 |a Blower, G.  |q (Gordon),  |e author. 
245 1 0 |a Random matrices :  |b high dimensional phenomena /  |c Gordon Blower, Lancaster University. 
264 1 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2009. 
264 4 |c ©2009 
300 |a 1 online resource (x, 437 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 367 
520 |a This book focuses on the behaviour of large random matrices. Standard results are covered, and the presentation emphasizes elementary operator theory and differential equations, so as to be accessible to graduate students and other non-experts. The introductory chapters review material on Lie groups and probability measures in a style suitable for applications in random matrix theory. Later chapters use modern convexity theory to establish subtle results about the convergence of eigenvalue distributions as the size of the matrices increases. Random matrices are viewed as geometrical objects with large dimension. The book analyzes the concentration of measure phenomenon, which describes how measures behave on geometrical objects with large dimension. To prove such results for random matrices, the book develops the modern theory of optimal transportation and proves the associated functional inequalities involving entropy and information. These include the logarithmic Sobolev inequality, which measures how fast some physical systems converge to equilibrium. 
504 |a Includes bibliographical references (pages 424-432) and index. 
588 0 |a Print version record. 
505 0 |a Cover; Title; Copyright; Dedication; Contents; Introduction; 1 Metric measure spaces; Abstract; 1.1 Weak convergence on compact metric spaces; 1.2 Invariant measure on a compact metric group; 1.3 Measures on non-compact Polish spaces; 1.4 The Brunn-Minkowski inequality; 1.5 Gaussian measures; 1.6 Surface area measure on the spheres; 1.7 Lipschitz functions and the Hausdorff metric; 1.8 Characteristic functions and Cauchy transforms; 2 Lie groups and matrix ensembles; Abstract; 2.1 The classical groups, their eigenvalues and norms; 2.2 Determinants and functional calculus. 
505 8 |a 2.3 Linear Lie groups2.4 Connections and curvature; 2.5 Generalized ensembles; 2.6 The Weyl integration formula; 2.7 Dyson's circular ensembles; 2.8 Circular orthogonal ensemble; 2.9 Circular symplectic ensemble; 3 Entropy and concentration of measure; Abstract; 3.1 Relative entropy; 3.2 Concentration of measure; 3.3 Transportation; 3.4 Transportation inequalities; 3.5 Transportation inequalities for uniformlyconvex potentials; 3.6 Concentration of measure in matrix ensembles; 3.7 Concentration for rectangular Gaussian matrices; 3.8 Concentration on the sphere. 
505 8 |a 3.9 Concentration for compact Lie groups4 Free entropy and equilibrium; Abstract; 4.1 Logarithmic energy and equilibrium measure; 4.2 Energy spaces on the disc; 4.3 Free versus classical entropy on the spheres; 4.4 Equilibrium measures for potentials on the real line; 4.5 Equilibrium densities for convex potentials; 4.6 The quartic model with positive leading term; 4.7 Quartic models with negative leading term; 4.8 Displacement convexity and relative free entropy; 4.9 Toeplitz determinants; 5 Convergence to equilibrium; Abstract; 5.1 Convergence to arclength; 5.2 Convergence of ensembles. 
505 8 |a 5.3 Mean field convergence5.4 Almost sure weak convergence for uniformly convex potentials; 5.5 Convergence for the singular numbers from the Wishart distribution; 6 Gradient flows and functional inequalities; Abstract; 6.1 Variation of functionals and gradient flows; 6.2 Logarithmic Sobolev inequalities; 6.3 Logarithmic Sobolev inequalities for uniformlyconvex potentials; 6.4 Fisher's information and Shannon's entropy; 6.5 Free information and entropy; 6.6 Free logarithmic Sobolev inequality; 6.7 Logarithmic Sobolev and spectral gap inequalities. 
505 8 |a 6.8 Inequalities for Gibbs measures onRiemannian manifolds7 Young tableaux; Abstract; 7.1 Group representations; 7.2 Young diagrams; 7.3 The Vershik distribution; 7.4 Distribution of the longest increasing subsequence; 7.5 Inclusion-exclusion principle; 8 Random point fields and random matrices; Abstract; 8.1 Determinantal random point fields; 8.2 Determinantal random point fields on the real line; 8.3 Determinantal random point fields and orthogonal polynomials; 8.4 De Branges's spaces; 8.5 Limits of kernels; 9 Integrable operators and differential equations; Abstract. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Random matrices. 
650 6 |a Matrices aléatoires. 
650 7 |a MATHEMATICS  |x Matrices.  |2 bisacsh 
650 7 |a Random matrices.  |2 fast  |0 (OCoLC)fst01089803 
650 7 |a Stochastische Matrix  |2 gnd 
776 0 8 |i Print version:  |a Blower, G. (Gordon).  |t Random matrices.  |d Cambridge ; New York : Cambridge University Press, ©2009  |z 9780521133128  |w (DLC) 2010275269  |w (OCoLC)401146699 
830 0 |a London Mathematical Society lecture note series ;  |v 367. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399264  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21787960 
938 |a ebrary  |b EBRY  |n ebr10502819 
938 |a EBSCOhost  |b EBSC  |n 399264 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 329586 
938 |a YBP Library Services  |b YANK  |n 7205428 
938 |a YBP Library Services  |b YANK  |n 7235588 
938 |a YBP Library Services  |b YANK  |n 7302875 
938 |a YBP Library Services  |b YANK  |n 7499518 
994 |a 92  |b IZTAP