Cargando…

An invitation to q-series : from Jacobi's triple product identity to Ramanujan's "most beautiful identity" /

The aim of these lecture notes is to provide a self-contained exposition of several fascinating formulas discovered by Srinivasa Ramanujan. Two central results in these notes are: (1) the evaluation of the Rogers-Ramanujan continued fraction -- a result that convinced G H Hardy that Ramanujan was a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chan, Hei-Chi
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Pub Co., ©2011.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Introduction
  • Part I: Jacobi's triple product identity ; First proof (via functional equation)
  • Second proof (via Gaussian polynomials and the q-binomial theorem)
  • Some applications
  • The Boson-Fermion correspondence
  • Macdonald's identities
  • Part II: The Rogers-Ramanujan identitites ; First proof (via functional equation)
  • Second proof (involving Gaussian polynomials and difference equations)
  • Third proof (via Bailey's lemma)
  • Excursus : mock theta functions
  • Part III: The Rogers-Ramanujan continued fraction ; A list of theorems to be proven
  • The evaluation of the Rogers-Ramanujan continued fraction
  • A "difficult and deep" identity
  • A remarkable identity from the Lost Notebook and cranks
  • A differential equation for the Rogers-Ramanujan continued fraction
  • Part IV: From the "most beautiful identity" to Ramanujan's congruences ; Proofs of the "most beautiful identity"
  • Ramanujan's congruences I : analytical methods
  • Ramanujan's congruences II : an introduction to t -cores
  • Ramanujan's congruences III : more congruences
  • Excursus : modular forms and more congruences for the partition function.