Cargando…

An invitation to q-series : from Jacobi's triple product identity to Ramanujan's "most beautiful identity" /

The aim of these lecture notes is to provide a self-contained exposition of several fascinating formulas discovered by Srinivasa Ramanujan. Two central results in these notes are: (1) the evaluation of the Rogers-Ramanujan continued fraction -- a result that convinced G H Hardy that Ramanujan was a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chan, Hei-Chi
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Pub Co., ©2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn759117210
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 111031s2011 si a ob 001 0 eng d
010 |z  2011292543 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d IDEBK  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d NLGGC  |d CCO  |d EBLCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d COCUF  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d TKN  |d TXI  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO 
019 |a 748215487  |a 816858971  |a 858228514  |a 1055392027  |a 1058191249  |a 1066416230  |a 1081228028  |a 1086430422  |a 1228556593  |a 1393049647 
020 |a 9789814343855  |q (electronic bk.) 
020 |a 9814343854  |q (electronic bk.) 
020 |a 1283235056 
020 |a 9781283235051 
020 |z 9789814343848 
020 |z 9814343846 
029 1 |a AU@  |b 000051431788 
029 1 |a AU@  |b 000058045934 
029 1 |a AU@  |b 000058199670 
029 1 |a DEBBG  |b BV043095802 
029 1 |a DEBBG  |b BV044161563 
029 1 |a DEBSZ  |b 372703771 
029 1 |a DEBSZ  |b 393922855 
029 1 |a DEBSZ  |b 421539356 
029 1 |a DEBSZ  |b 454996632 
029 1 |a NZ1  |b 15912458 
035 |a (OCoLC)759117210  |z (OCoLC)748215487  |z (OCoLC)816858971  |z (OCoLC)858228514  |z (OCoLC)1055392027  |z (OCoLC)1058191249  |z (OCoLC)1066416230  |z (OCoLC)1081228028  |z (OCoLC)1086430422  |z (OCoLC)1228556593  |z (OCoLC)1393049647 
050 4 |a QA295  |b .C48 2011eb 
072 7 |a MAT  |x 016000  |2 bisacsh 
072 7 |a PBK  |2 bicssc 
082 0 4 |a 515.243  |2 22 
049 |a UAMI 
100 1 |a Chan, Hei-Chi. 
245 1 3 |a An invitation to q-series :  |b from Jacobi's triple product identity to Ramanujan's "most beautiful identity" /  |c Hei-Chi Chan. 
260 |a Singapore :  |b World Scientific Pub Co.,  |c ©2011. 
300 |a 1 online resource (ix, 226 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes appendices, bibliographical references (pages 213-223), and index. 
505 0 |a Introduction -- Part I: Jacobi's triple product identity ; First proof (via functional equation) -- Second proof (via Gaussian polynomials and the q-binomial theorem) -- Some applications -- The Boson-Fermion correspondence -- Macdonald's identities -- Part II: The Rogers-Ramanujan identitites ; First proof (via functional equation) -- Second proof (involving Gaussian polynomials and difference equations) -- Third proof (via Bailey's lemma) -- Excursus : mock theta functions -- Part III: The Rogers-Ramanujan continued fraction ; A list of theorems to be proven -- The evaluation of the Rogers-Ramanujan continued fraction -- A "difficult and deep" identity -- A remarkable identity from the Lost Notebook and cranks -- A differential equation for the Rogers-Ramanujan continued fraction -- Part IV: From the "most beautiful identity" to Ramanujan's congruences ; Proofs of the "most beautiful identity" -- Ramanujan's congruences I : analytical methods -- Ramanujan's congruences II : an introduction to t -cores -- Ramanujan's congruences III : more congruences -- Excursus : modular forms and more congruences for the partition function. 
520 |a The aim of these lecture notes is to provide a self-contained exposition of several fascinating formulas discovered by Srinivasa Ramanujan. Two central results in these notes are: (1) the evaluation of the Rogers-Ramanujan continued fraction -- a result that convinced G H Hardy that Ramanujan was a "mathematician of the highest class", and (2) what G.H. Hardy called Ramanujan's "Most Beautiful Identity". This book covers a range of related results, such as several proofs of the famous Rogers-Ramanujan identities and a detailed account of Ramanujan's congruences. It also covers a range of techniques in q-series 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a q-series. 
650 0 |a Jacobi identity. 
650 0 |a Rogers-Ramanujan identities. 
650 6 |a Séries Q. 
650 6 |a Identité de Jacobi. 
650 6 |a Identités de Rogers-Ramanujan. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a Jacobi identity  |2 fast 
650 7 |a q-series  |2 fast 
650 7 |a Rogers-Ramanujan identities  |2 fast 
776 0 8 |i Print version:  |a Chan, Hei-Chi.  |t Invitation to q-series.  |d Singapore : World Scientific Pub Co., ©2011  |z 9789814343848  |w (DLC) 2011292543  |w (OCoLC)707965406 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=389638  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565344 
938 |a EBL - Ebook Library  |b EBLB  |n EBL840594 
938 |a ebrary  |b EBRY  |n ebr10493540 
938 |a EBSCOhost  |b EBSC  |n 389638 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 323505 
938 |a YBP Library Services  |b YANK  |n 7188507 
938 |a Internet Archive  |b INAR  |n invitationtoqser0000chan 
994 |a 92  |b IZTAP