Cargando…

Advanced artificial intelligence /

Artificial intelligence is a branch of computer science and a discipline in the study of machine intelligence, that is, developing intelligent machines or intelligent systems imitating, extending and augmenting human intelligence through artificial means and techniques to realize intelligent behavio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shi, Zhongzhi
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2011.
Colección:Series on intelligence science ; v. 1.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn754765355
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110927s2011 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d E7B  |d I9W  |d UIU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d NLGGC  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d JBG  |d AGLDB  |d OCLCQ  |d MOR  |d OTZ  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d COCUF  |d CEF  |d NRAMU  |d INT  |d VT2  |d OCLCQ  |d REC  |d ICG  |d TKN  |d WYU  |d OCLCQ  |d UKAHL  |d LEAUB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1055363699  |a 1062929979  |a 1081195616  |a 1086514553  |a 1228611182 
020 |a 9789814291354  |q (electronic bk.) 
020 |a 9814291358  |q (electronic bk.) 
020 |z 9789814291347 
020 |z 981429134X 
029 1 |a AU@  |b 000048219676 
029 1 |a DEBBG  |b BV042968450 
029 1 |a DEBSZ  |b 372703755 
029 1 |a DEBSZ  |b 421539623 
029 1 |a NZ1  |b 14256939 
035 |a (OCoLC)754765355  |z (OCoLC)1055363699  |z (OCoLC)1062929979  |z (OCoLC)1081195616  |z (OCoLC)1086514553  |z (OCoLC)1228611182 
050 4 |a Q335  |b .S55 2011eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.3  |2 22 
049 |a UAMI 
100 1 |a Shi, Zhongzhi. 
245 1 0 |a Advanced artificial intelligence /  |c Zhongzhi Shi. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2011. 
300 |a 1 online resource (xvi, 613 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on intelligence science ;  |v v. 1 
504 |a Includes bibliographical references (pages 585-613). 
505 0 0 |g Machine generated contents note:  |g ch. 1  |t Introduction --  |g 1.1.  |t Brief History of AI --  |g 1.2.  |t Cognitive Issues of AI --  |g 1.3.  |t Hierarchical Model of Thought --  |g 1.4.  |t Symbolic Intelligence --  |g 1.5.  |t Research Approaches of Artificial Intelligence --  |g 1.6.  |t Automated Reasoning --  |g 1.7.  |t Machine Learning --  |g 1.8.  |t Distributed Artificial Intelligence --  |g 1.9.  |t Artificial Thought Model --  |g 1.10.  |t Knowledge Based Systems --  |t Exercises --  |g ch. 2  |t Logic Foundation of Artificial Intelligence --  |g 2.1.  |t Introduction --  |g 2.2.  |t Logic Programming --  |g 2.3.  |t Nonmonotonic Logic --  |g 2.4.  |t Closed World Assumption --  |g 2.5.  |t Default Logic --  |g 2.6.  |t Circumscription Logic --  |g 2.7.  |t Nonmonotonic Logic NML --  |g 2.8.  |t Autoepistemic Logic --  |g 2.9.  |t Truth Maintenance System --  |g 2.10.  |t Situation Calculus --  |g 2.11.  |t Frame Problem --  |g 2.12.  |t Dynamic Description Logic --  |t Exercises --  |g ch. 3  |t Constraint Reasoning --  |g 3.1.  |t Introduction --  |g 3.2.  |t Backtracking --  |g 3.3.  |t Constraint Propagation --  |g 3.4.  |t Constraint Propagation in Tree Search --  |g 3.5.  |t Intelligent Backtracking and Truth Maintenance. 
505 0 0 |g 3.6.  |t Variable Instantiation Ordering and Assignment Ordering --  |g 3.7.  |t Local Revision Search --  |g 3.8.  |t Graph-based Backjumping --  |g 3.9.  |t Influence-based Backjumping --  |g 3.10.  |t Constraint Relation Processing --  |g 3.11.  |t Constraint Reasoning System COPS --  |g 3.12.  |t ILOG Solver --  |t Exercise --  |g ch. 4  |t Qualitative Reasoning --  |g 4.1.  |t Introduction --  |g 4.2.  |t Basic approaches in qualitative reasoning --  |g 4.3.  |t Qualitative Model --  |g 4.4.  |t Qualitative Process --  |g 4.5.  |t Qualitative Simulation Reasoning --  |g 4.6.  |t Algebra Approach --  |g 4.7.  |t Spatial Geometric Qualitative Reasoning --  |t Exercises --  |g ch. 5  |t Case-Based Reasoning --  |g 5.1.  |t Overview --  |g 5.2.  |t Basic Notations --  |g 5.3.  |t Process Model --  |g 5.4.  |t Case Representation --  |g 5.5.  |t Case Indexing --  |g 5.6.  |t Case Retrieval --  |g 5.7.  |t Similarity Relations in CBR --  |g 5.8.  |t Case Reuse --  |g 5.9.  |t Case Retainion --  |g 5.10.  |t Instance-Based Learning --  |g 5.11.  |t Forecast System for Central Fishing Ground --  |t Exercises --  |g ch. 6  |t Probabilistic Reasoning --  |g 6.1.  |t Introduction --  |g 6.2.  |t Foundation of Bayesian Probability --  |g 6.3.  |t Bayesian Problem Solving --  |g 6.4.  |t Naive Bayesian Learning Model. 
505 0 0 |g 6.5.  |t Construction of Bayesian Network --  |g 6.6.  |t Bayesian Latent Semantic Model --  |g 6.7.  |t Semi-supervised Text Mining Algorithms --  |t Exercises --  |g ch. 7  |t Inductive Learning --  |g 7.1.  |t Introduction --  |g 7.2.  |t Logic Foundation of Inductive Learning --  |g 7.3.  |t Inductive Bias --  |g 7.4.  |t Version Space --  |g 7.5.  |t AQ Algorithm for Inductive Learning --  |g 7.6.  |t Constructing Decision Trees --  |g 7.7.  |t ID3 Learning Algorithm --  |g 7.8.  |t Bias Shift Based Decision Tree Algorithm --  |g 7.9.  |t Computational Theories of Inductive Learning --  |t Exercises --  |g ch. 8  |t Support Vector Machine --  |g 8.1.  |t Statistical Learning Problem --  |g 8.2.  |t Consistency of Learning Processes --  |g 8.3.  |t Structural Risk Minimization Inductive Principle --  |g 8.4.  |t Support Vector Machine --  |g 8.5.  |t Kernel Function --  |t Exercises --  |g ch. 9  |t Explanation-Based Learning --  |g 9.1.  |t Introduction --  |g 9.2.  |t Model for EBL --  |g 9.3.  |t Explanation-Based Generalization --  |g 9.4.  |t Explanation Generalization using Global Substitutions --  |g 9.5.  |t Explanation-Based Specialization --  |g 9.6.  |t Logic Program of Explanation-Based Generalization --  |g 9.7.  |t SOAR Based on Memory Chunks. 
505 0 0 |g 9.8.  |t Operationalization --  |g 9.9.  |t EBL with imperfect domain theory --  |t Exercises --  |g ch. 10  |t Reinforcement Learning --  |g 10.1.  |t Introduction --  |g 10.2.  |t Reinforcement Learning Model --  |g 10.3.  |t Dynamic Programming --  |g 10.4.  |t Monte Carlo Methods --  |g 10.5.  |t Temporal-Difference Learning --  |g 10.6.  |t Q-Learning --  |g 10.7.  |t Function Approximation --  |g 10.8.  |t Reinforcement Learning Applications --  |t Exercises --  |g ch. 11  |t Rough Set --  |g 11.1.  |t Introduction --  |g 11.2.  |t Reduction of Knowledge --  |g 11.3.  |t Decision Logic --  |g 11.4.  |t Reduction of Decision Tables --  |g 11.5.  |t Extended Model of Rough Sets --  |g 11.6.  |t Experimental Systems of Rough Sets --  |g 11.7.  |t Granular Computing --  |g 11.8.  |t Future Trends of Rough Set Theory --  |t Exercises --  |g ch. 12  |t Association Rules --  |g 12.1.  |t Introduction --  |g 12.2.  |t The Apriori Algorithm --  |g 12.3.  |t FP-Growth Algorithm --  |g 12.4.  |t CFP-Tree Algorithm --  |g 12.5.  |t Mining General Fuzzy Association Rules --  |g 12.6.  |t Distributed Mining Algorithm For Association Rules --  |g 12.7.  |t Parallel Mining of Association Rules --  |t Exercises --  |g ch. 13  |t Evolutionary Computation --  |g 13.1.  |t Introduction --  |g 13.2.  |t Formal Model of Evolution System Theory. 
505 0 0 |g 13.3.  |t Darwin's Evolutionary Algorithm --  |g 13.4.  |t Classifier System --  |g 13.5.  |t Bucket Brigade Algorithm --  |g 13.6.  |t Genetic Algorithm --  |g 13.7.  |t Parallel Genetic Algorithm --  |g 13.8.  |t Classifier System Boole --  |g 13.9.  |t Rule Discovery System --  |g 13.10.  |t Evolutionary Strategy --  |g 13.11.  |t Evolutionary Programming --  |t Exercises --  |g ch. 14  |t Distributed Intelligence --  |g 14.1.  |t Introduction --  |g 14.2.  |t The Essence of Agent --  |g 14.3.  |t Agent Architecture --  |g 14.4.  |t Agent Communication Language ACL --  |g 14.5.  |t Coordination and Cooperation --  |g 14.6.  |t Mobile Agent --  |g 14.7.  |t Multi-Agent Environment MAGE --  |g 14.8.  |t Agent Grid Intelligence Platform --  |t Exercises --  |g ch. 15  |t Artificial Life --  |g 15.1.  |t Introduction --  |g 15.2.  |t Exploration of Artificial Life --  |g 15.3.  |t Artificial Life Model --  |g 15.4.  |t Research Approach of Artificial Life --  |g 15.5.  |t Cellular Automata --  |g 15.6.  |t Morphogenesis Theory --  |g 15.7.  |t Chaos Theories --  |g 15.8.  |t Experimental Systems of Artificial Life --  |t Exercises. 
588 0 |a Print version record. 
520 |a Artificial intelligence is a branch of computer science and a discipline in the study of machine intelligence, that is, developing intelligent machines or intelligent systems imitating, extending and augmenting human intelligence through artificial means and techniques to realize intelligent behavior. Advanced Artificial Intelligence consists of 16 chapters. The content of the book is novel. It reflects the research updates in this field and especially summarizes the author's scientific efforts over many years. The book discusses the methods and key technology from theory, algorithm, system and applications related to artificial intelligence. This book can be regarded as a textbook for senior students or graduate students in the information field and related tertiary specialities. It is also suitable as a reference book for relevant scientific and technical personnel. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Intelligence artificielle.  |2 ram 
776 0 8 |i Print version:  |a Shi, Zhongzhi.  |t Advanced artificial intelligence.  |d Singapore ; Hackensack, NJ : World Scientific, ©2011  |z 9789814291347  |w (OCoLC)456173446 
830 0 |a Series on intelligence science ;  |v v. 1. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=389611  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565201 
938 |a ebrary  |b EBRY  |n ebr10493537 
938 |a EBSCOhost  |b EBSC  |n 389611 
938 |a YBP Library Services  |b YANK  |n 7135051 
994 |a 92  |b IZTAP