Cargando…

Ultrafilters and topologies on groups /

This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results about ultrafilters. Topics covered include: topological...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zelenyuk, Yevhen G.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; New York : De Gruyter, ©2011.
Colección:De Gruyter expositions in mathematics ; 50.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn754713543
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 110105s2011 gw ob 001 0 eng d
010 |z  2010050782 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d IDEBK  |d DKU  |d N$T  |d CDX  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d COO  |d OCLCQ  |d NLGGC  |d EBLCP  |d YDXCP  |d DEBBG  |d OCLCQ  |d S3O  |d OCLCQ  |d AZK  |d COCUF  |d UIU  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d CUY  |d OCLCQ  |d DEGRU  |d U3W  |d OCLCF  |d STF  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d AU@  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d VLY  |d AJS  |d VHC  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 723945447  |a 744520185  |a 816848814  |a 961499872  |a 962611221  |a 1055360322  |a 1058131218  |a 1066402506  |a 1081269306  |a 1162392648  |a 1228545267  |a 1241771677  |a 1290106605  |a 1300488557  |a 1303502860 
020 |a 9783110213225  |q (electronic bk.) 
020 |a 3110213222  |q (electronic bk.) 
020 |a 1283164728 
020 |a 9781283164726 
020 |a 3110204223  |q (alk. paper) 
020 |a 9783110204223  |q (alk. paper) 
020 |z 9783110204223  |q (alk. paper) 
020 |a 9786613164728 
020 |a 6613164720 
024 7 |a 10.1515/9783110213225  |2 doi 
029 1 |a AU@  |b 000051591520 
029 1 |a CHBIS  |b 010396534 
029 1 |a CHVBK  |b 331230437 
029 1 |a DEBBG  |b BV041910456 
029 1 |a DEBBG  |b BV042347324 
029 1 |a DEBBG  |b BV043063278 
029 1 |a DEBBG  |b BV044154229 
029 1 |a DEBSZ  |b 372700977 
029 1 |a DEBSZ  |b 396990320 
029 1 |a DEBSZ  |b 421549491 
029 1 |a DEBSZ  |b 430982909 
029 1 |a DEBSZ  |b 47827825X 
029 1 |a DKDLA  |b 820120-katalog:999936135405765 
035 |a (OCoLC)754713543  |z (OCoLC)723945447  |z (OCoLC)744520185  |z (OCoLC)816848814  |z (OCoLC)961499872  |z (OCoLC)962611221  |z (OCoLC)1055360322  |z (OCoLC)1058131218  |z (OCoLC)1066402506  |z (OCoLC)1081269306  |z (OCoLC)1162392648  |z (OCoLC)1228545267  |z (OCoLC)1241771677  |z (OCoLC)1290106605  |z (OCoLC)1300488557  |z (OCoLC)1303502860 
050 4 |a QA166.195  |b .Z45 2011eb 
072 7 |a MAT  |x 002050  |2 bisacsh 
082 0 4 |a 512/.55  |2 22 
049 |a UAMI 
100 1 |a Zelenyuk, Yevhen G. 
245 1 0 |a Ultrafilters and topologies on groups /  |c Yevhen G. Zelenyuk. 
260 |a Berlin ;  |a New York :  |b De Gruyter,  |c ©2011. 
300 |a 1 online resource (viii, 219 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter expositions in mathematics,  |x 0938-6572 ;  |v 50 
504 |a Includes bibliographical references and index. 
520 |a This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results about ultrafilters. Topics covered include: topological and left topological groups, ultrafilter semigroups, local homomorphisms and automorphisms, subgroups and ideal structure of ßG, almost maximal spaces and projectives of finite semigroups, resolvability of groups. This is a self-contained book aimed at graduate students and researchers working in topological algebra and adjacent areas. From the contents: Topological Groups Ultrafilters Topological Spaces with Extremal Properties Left Invariant Topologies and Strongly Discrete Filters Topological Groups with Extremal Properties The Semigroup ßS Ultrafilter Semigroups Finite Groups in ßG Ideal Structure of ßS Almost Maximal Topological Groups and Spaces Resolvability Open Problems. 
588 0 |a Print version record. 
546 |a In English. 
505 0 0 |6 880-01  |t Frontmatter --  |t Preface --  |t Contents --  |t 1 Topological Groups --  |t 2 Ultrafilters --  |t 3 Topological Spaces with Extremal Properties --  |t 4 Left Invariant Topologies and Strongly Discrete Filters --  |t 5 Topological Groups with Extremal Properties --  |t 6 The Semigroup [beta]S --  |t 7 Ultrafilter Semigroups --  |t 8 Finite Groups in [beta]G --  |t 9 Ideal Structure of [beta]G --  |t 10 Almost Maximal Topological Groups --  |t 11 Almost Maximal Spaces --  |t 12 Resolvability --  |t 13 Open Problems --  |t Bibliography --  |t Index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Topological group theory. 
650 0 |a Ultrafilters (Mathematics) 
650 4 |a Filter. 
650 4 |a Gruppentheorie. 
650 4 |a Topologie. 
650 6 |a Ultrafiltres (Mathématiques) 
650 7 |a MATHEMATICS  |x Algebra  |x Linear.  |2 bisacsh 
650 7 |a Ultrafilters (Mathematics)  |2 fast 
650 7 |a Topologische Gruppe  |2 gnd 
650 7 |a Ultrafilter  |g Mathematik  |2 gnd 
776 0 8 |i Print version:  |a Zelenyuk, Yevhen G.  |t Ultrafilters and topologies on groups.  |d Berlin ; New York : De Gruyter, ©2011  |w (DLC) 2010050782 
830 0 |a De Gruyter expositions in mathematics ;  |v 50.  |x 0938-6572 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=388077  |z Texto completo 
880 0 0 |6 505-01/(S  |t Frontmatter --  |t Preface --  |t Contents --  |t 1 Topological Groups --  |t 2 Ultrafilters --  |t 3 Topological Spaces with Extremal Properties --  |t 4 Left Invariant Topologies and Strongly Discrete Filters --  |t 5 Topological Groups with Extremal Properties --  |t 6 The Semigroup βS --  |t 7 Ultrafilter Semigroups --  |t 8 Finite Groups in βG --  |t 9 Ideal Structure of βG --  |t 10 Almost Maximal Topological Groups --  |t 11 Almost Maximal Spaces --  |t 12 Resolvability --  |t 13 Open Problems --  |t Bibliography --  |t Index. 
880 |6 520-00/(S  |a This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results about ultrafilters. The contents of the book fall naturally into three parts. The first, comprising Chapters 1 through 5, introduces to topological groups and ultrafilters insofar as the semigroup operation on ultrafilters is not required. Constructions of some important topological groups are given. In particular, that of an extremally disconnected topological group based on a Ramsey ultrafilter. Also one shows that every infinite group admits a nondiscrete zero-dimensional topology in which all translations and the inversion are continuous. In the second part, Chapters 6 through 9, the Stone-Cêch compactification βG of a discrete group G is studied. For this, a special technique based on the concepts of a local left group and a local homomorphism is developed. One proves that if G is a countable torsion free group, then βG contains no nontrivial finite groups. Also the ideal structure of βG is investigated. In particular, one shows that for every infinite Abelian group G, βG contains 22 
938 |a YBP Library Services  |b YANK  |n 3671796 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 316472 
938 |a EBSCOhost  |b EBSC  |n 388077 
938 |a ebrary  |b EBRY  |n ebr10486427 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL690579 
938 |a Coutts Information Services  |b COUT  |n 18203792 
938 |a De Gruyter  |b DEGR  |n 9783110213225 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25308614 
994 |a 92  |b IZTAP