|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn753970239 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
110921s2011 gw ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d OCLCQ
|d CDX
|d IDEBK
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d YDXCP
|d OCLCQ
|d NLGGC
|d DEBBG
|d EBLCP
|d MERUC
|d CN3GA
|d OCLCF
|d OCLCQ
|d S3O
|d COO
|d OCLCQ
|d AZK
|d LOA
|d COCUF
|d UIU
|d AGLDB
|d MOR
|d PIFAG
|d ZCU
|d OCLCQ
|d DEGRU
|d U3W
|d STF
|d WRM
|d OCLCQ
|d VTS
|d NRAMU
|d ICG
|d INT
|d VT2
|d AU@
|d OCLCQ
|d WYU
|d OCLCQ
|d TKN
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d VLY
|d AJS
|d OCLCQ
|d OCLCO
|d AAA
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
016 |
7 |
|
|a 015848897
|2 Uk
|
019 |
|
|
|a 743693614
|a 747413854
|a 816881812
|a 961499457
|a 962611017
|a 1058067646
|a 1162379587
|
020 |
|
|
|a 9783110250275
|q (electronic bk.)
|
020 |
|
|
|a 3110250276
|q (electronic bk.)
|
020 |
|
|
|z 9783110250268
|
020 |
|
|
|z 3110250268
|
020 |
|
|
|a 1283399938
|
020 |
|
|
|a 9781283399937
|
020 |
|
|
|a 9786613399939
|
020 |
|
|
|a 6613399930
|
024 |
7 |
|
|a 10.1515/9783110250275
|2 doi
|
029 |
1 |
|
|a AU@
|b 000051587468
|
029 |
1 |
|
|a DEBBG
|b BV042348141
|
029 |
1 |
|
|a DEBBG
|b BV043123765
|
029 |
1 |
|
|a DEBBG
|b BV044156508
|
029 |
1 |
|
|a DEBSZ
|b 372700926
|
029 |
1 |
|
|a DEBSZ
|b 397100639
|
029 |
1 |
|
|a DEBSZ
|b 421562021
|
029 |
1 |
|
|a DEBSZ
|b 431017069
|
029 |
1 |
|
|a DEBSZ
|b 478280939
|
029 |
1 |
|
|a GBVCP
|b 803645325
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999937128605765
|
035 |
|
|
|a (OCoLC)753970239
|z (OCoLC)743693614
|z (OCoLC)747413854
|z (OCoLC)816881812
|z (OCoLC)961499457
|z (OCoLC)962611017
|z (OCoLC)1058067646
|z (OCoLC)1162379587
|
050 |
|
4 |
|a QA322.4
|b .P53 2011eb
|
072 |
|
7 |
|a MAT
|x 031000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.733
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Picard, R. H.
|q (Rainer H.)
|
245 |
1 |
0 |
|a Partial differential equations :
|b a unified Hilbert space approach /
|c Rainer Picard, Des McGhee.
|
260 |
|
|
|a Berlin ;
|a New York :
|b De Gruyter,
|c ©2011.
|
300 |
|
|
|a 1 online resource (xviii, 469 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a De Gruyter expositions in mathematics ;
|v 55
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|6 880-01
|a Preface; Contents; Nomenclature; 1 Elements of Hilbert Space Theory; 2 Sobolev Lattices; 3 Linear Partial Differential Equations with Constant Coefficients; 4 Linear Evolution Equations; 5 Some Evolution Equations of Mathematical Physics; 6 A "Royal Road" to Initial Boundary Value Problems; Conclusion; Bibliography; Index.
|
520 |
|
|
|a This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. This global point of view is takenby focussing on the issues involved in determining the appropriate func.
|
546 |
|
|
|a In English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Hilbert space.
|
650 |
|
0 |
|a Differential equations, Partial.
|
650 |
|
4 |
|a Differential equations, Partial.
|
650 |
|
4 |
|a Equations.
|
650 |
|
4 |
|a Hilbert space.
|
650 |
|
6 |
|a Espace de Hilbert.
|
650 |
|
6 |
|a Équations aux dérivées partielles.
|
650 |
|
7 |
|a MATHEMATICS
|x Transformations.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Partial
|2 fast
|
650 |
|
7 |
|a Hilbert space
|2 fast
|
700 |
1 |
|
|a McGhee, D. F.
|
776 |
0 |
8 |
|i Print version:
|a Picard, R.H. (Rainer H.).
|t Partial differential equations.
|d Berlin ; New York : De Gruyter, ©2011
|z 9783110250268
|w (DLC) 2011004423
|w (OCoLC)705567992
|
830 |
|
0 |
|a De Gruyter expositions in mathematics ;
|v 55.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=381760
|z Texto completo
|
880 |
0 |
|
|6 505-01/(S
|a Machine generated contents note: 1. Elements of Hilbert Space Theory -- 1.1. Hilbert Space -- 1.2. Some Construction Principles of Hilbert Spaces -- 1.2.1. Direct Sums of Hilbert Spaces -- 1.2.2. Dual Spaces -- 1.2.3. Tensor Products of Hilbert Spaces -- 2. Sobolev Lattices -- 2.1. Sobolev Chains -- 2.2. Sobolev Lattices -- 2.3. Sobolev Lattices from Tensor Products of Sobolev Chains -- 3. Linear Partial Differential Equations with Constant Coefficients -- 3.1. Partial Differential Equations in H-[∞]([∂]ν + e) -- 3.1.1. First Steps Towards a Solution Theory -- 3.1.2. The Tarski-Seidenberg Theorem and some Consequences -- 3.1.3. Regularity Loss (0 ...,0) -- 3.1.4. Classification of Partial Differential Equations -- 3.1.5. The Classical Classification of Partial Differential Equations -- 3.1.6. Elliptic, Parabolic, Hyperbolic-- 3.1.7. Evolutionary Expressions in Canonical Form -- 3.1.8. Functions of [∂]ν and Convolutions -- 3.1.9. Systems and Scalar Equations.
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3688161
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 339993
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 381760
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10485452
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL736995
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 20504063
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9783110250275
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25310576
|
994 |
|
|
|a 92
|b IZTAP
|