Cargando…

Groups of prime power order. Volume 3 /

This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume: (a) impact of minimal nonabelian subgroups on the structure of p-groups, (b) classification of groups all of whose nonnormal subgroups have the same order, (c) degrees of irr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berkovich, I͡A. G., 1938-
Otros Autores: Janko, Zvonimir, 1932-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 2011.
Colección:De Gruyter expositions in mathematics ; 56.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn747413860
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 110809s2011 gw ob 001 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d CDX  |d COO  |d N$T  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCF  |d YDXCP  |d DEBBG  |d OCLCQ  |d LOA  |d COCUF  |d UIU  |d MOR  |d PIFAG  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d INT  |d OCLCQ  |d ICG  |d TKN  |d OCLCQ  |d UKAHL  |d OCLCQ  |d HS0  |d VLY  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 961499598  |a 962611018  |a 1162020654 
020 |a 9783110254488  |q (electronic bk.) 
020 |a 3110254484  |q (electronic bk.) 
020 |a 9783110207170 
020 |a 3110207176 
020 |z 3110207176 
020 |a 1283400375 
020 |a 9781283400374 
020 |a 9786613400376 
020 |a 6613400378 
024 8 |a 9786613400376 
029 1 |a AU@  |b 000052942130 
029 1 |a AU@  |b 000062597205 
029 1 |a DEBBG  |b BV042348225 
029 1 |a DEBBG  |b BV043119144 
029 1 |a DEBSZ  |b 372700934 
029 1 |a DEBSZ  |b 421561963 
035 |a (OCoLC)747413860  |z (OCoLC)961499598  |z (OCoLC)962611018  |z (OCoLC)1162020654 
050 4 |a QA177  |b .B47 2011eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512/.23  |2 22 
049 |a UAMI 
100 1 |a Berkovich, I͡A. G.,  |d 1938- 
245 1 0 |a Groups of prime power order.  |n Volume 3 /  |c Yakov Berkovich, Zvonimir Janko. 
260 |a Berlin :  |b De Gruyter,  |c 2011. 
300 |a 1 online resource (xxv, 639 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter expositions in mathematics,  |x 0938-6572 ;  |v 56 
490 0 |a Groups of prime power order ;  |v v. 3 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
505 0 |a List of definitions and notations; Preface; Prerequisites from Volumes 1 and 2; 93 Nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4; 94 Nonabelian 2-groups all of whose minimal nonabelian subgroups are nonmetacyclic and have exponent 4; 95 Nonabelian 2-groups of exponent 2e which have no minimal nonabelian subgroups of exponent 2e; 96 Groups with at most two conjugate classes of nonnormal subgroups; 97 p-groups in which some subgroups are generated by elements of order p 
505 8 |a 98 Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic to M2n+1, n? 3 fixed99 2-groups with sectional rank at most 4; 100 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian; 101 p-groups G with p > 2 and d(G) = 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian; 102 p-groups G with p > 2 and d(G) > 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian; 103 Some results of Jonah and Konvisser 
505 8 |a 104 Degrees of irreducible characters of p-groups associated with finite algebras105 On some special p-groups; 106 On maximal subgroups of two-generator 2-groups; 107 Ranks of maximal subgroups of nonmetacyclic two-generator 2-groups; 108 p-groups with few conjugate classes of minimal nonabelian subgroups; 109 On p-groups with metacyclic maximal subgroup without cyclic subgroup of index p; 110 Equilibrated p-groups; 111 Characterization of abelian and minimal nonabelian groups; 112 Non-Dedekindian p-groups all of whose nonnormal subgroups have the same order 
505 8 |a 113 The class of 2-groups in 70 is not bounded114 Further counting theorems; 115 Finite p-groups all of whose maximal subgroups except one are extraspecial; 116 Groups covered by few proper subgroups; 117 2-groups all of whose nonnormal subgroups are either cyclic or of maximal class; 118 Review of characterizations of p-groups with various minimal nonabelian subgroups; 119 Review of characterizations of p-groups of maximal class; 120 Nonabelian 2-groups such that any two distinct minimal nonabelian subgroups have cyclic intersection; 121 p-groups of breadth 2 
505 8 |a 122 p-groups all of whose subgroups have normalizers of index at most p123 Subgroups of finite groups generated by all elements in two shortest conjugacy classes; 124 The number of subgroups of given order in a metacyclic p-group; 125 p-groups G containing a maximal subgroup H all of whose subgroups are G-invariant; 126 The existence of p-groups G1 < G such that Aut(G1) ? Aut(G); 127 On 2-groups containing a maximal elementary abelian subgroup of order 4; 128 The commutator subgroup of p-groups with the subgroup breadth 1 
520 |a This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume: (a) impact of minimal nonabelian subgroups on the structure of p-groups, (b) classification of groups all of whose nonnormal subgroups have the same order, (c) degrees of irreducible characters of p-groups associated with finite algebras, (d) groups covered by few proper subgroups, (e) p-groups of element breadth 2 and subgroup breadth 1, (f) exact number of subgroups of given order in a metacyclic p-group, (g) soft subgroups, (h) p-groups with a maximal elementary abel. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Finite groups. 
650 0 |a Group theory. 
650 6 |a Groupes finis. 
650 6 |a Théorie des groupes. 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Finite groups  |2 fast 
650 7 |a Group theory  |2 fast 
700 1 |a Janko, Zvonimir,  |d 1932- 
776 0 8 |i Print version:  |z 9783110207170 
830 0 |a De Gruyter expositions in mathematics ;  |v 56.  |x 0938-6572 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=381766  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25310890 
938 |a Coutts Information Services  |b COUT  |n 20504107 
938 |a ebrary  |b EBRY  |n ebr10485459 
938 |a EBSCOhost  |b EBSC  |n 381766 
938 |a YBP Library Services  |b YANK  |n 6928023 
994 |a 92  |b IZTAP