Cargando…

Barycentric calculus in Euclidean and hyperbolic geometry : a comparative introduction /

The word barycentric is derived from the Greek word barys (heavy), and refers to center of gravity. Barycentric calculus is a method of treating geometry by considering a point as the center of gravity of certain other points to which weights are ascribed. Hence, in particular, barycentric calculus...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ungar, Abraham A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2010.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn743806200
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110801s2010 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d I9W  |d OCLCQ  |d OCLCF  |d NLGGC  |d OCLCQ  |d EBLCP  |d DEBSZ  |d YDXCP  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d VTS  |d ICG  |d INT  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d K6U  |d OCLCQ  |d LEAUB  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 741492844  |a 1086425902 
020 |a 9789814304948  |q (electronic bk.) 
020 |a 9814304948  |q (electronic bk.) 
020 |z 9789814304931 
020 |z 981430493X 
029 1 |a AU@  |b 000047753004 
029 1 |a AU@  |b 000055767503 
029 1 |a DEBBG  |b BV043154845 
029 1 |a DEBBG  |b BV044156398 
029 1 |a DEBSZ  |b 379322439 
029 1 |a DEBSZ  |b 421583924 
029 1 |a DEBSZ  |b 454996055 
029 1 |a GBVCP  |b 803615779 
035 |a (OCoLC)743806200  |z (OCoLC)741492844  |z (OCoLC)1086425902 
050 4 |a QA455  |b .U54 2010eb 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516.22  |2 22 
049 |a UAMI 
100 1 |a Ungar, Abraham A. 
245 1 0 |a Barycentric calculus in Euclidean and hyperbolic geometry :  |b a comparative introduction /  |c Abraham Albert Ungar. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2010. 
300 |a 1 online resource (xiv, 344 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Euclidean barycentric coordinates and the classic triangle centers -- Gyrovector spaces and Cartesian models of hyperbolic geometry -- The interplay of Einstein addition and vector addition -- Hyperbolic barycentric coordinates and hyperbolic triangle centers -- Hyperbolic incircles and excircles -- Hyperbolic tetrahedra -- Comparative patterns. 
520 |a The word barycentric is derived from the Greek word barys (heavy), and refers to center of gravity. Barycentric calculus is a method of treating geometry by considering a point as the center of gravity of certain other points to which weights are ascribed. Hence, in particular, barycentric calculus provides excellent insight into triangle centers. This unique book on barycentric calculus in Euclidean and hyperbolic geometry provides an introduction to the fascinating and beautiful subject of novel triangle centers in hyperbolic geometry along with analogies they share with familiar triangle centers in Euclidean geometry. As such, the book uncovers magnificent unifying notions that Euclidean and hyperbolic triangle centers share. In his earlier books the author adopted Cartesian coordinates, trigonometry and vector algebra for use in hyperbolic geometry that is fully analogous to the common use of Cartesian coordinates, trigonometry and vector algebra in Euclidean geometry. As a result, powerful tools that are commonly available in Euclidean geometry became available in hyperbolic geometry as well, enabling one to explore hyperbolic geometry in novel ways. In particular, this new book establishes hyperbolic barycentric coordinates that are used to determine various hyperbolic triangle centers just as Euclidean barycentric coordinates are commonly used to determine various Euclidean triangle centers. The hunt for Euclidean triangle centers is an old tradition in Euclidean geometry, resulting in a repertoire of more than three thousand triangle centers that are known by their barycentric coordinate representations. The aim of this book is to initiate a fully analogous hunt for hyperbolic triangle centers that will broaden the repertoire of hyperbolic triangle centers provided here. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Geometry, Plane. 
650 0 |a Geometry, Hyperbolic. 
650 0 |a Triangle. 
650 0 |a Calculus. 
650 6 |a Géométrie plane. 
650 6 |a Géométrie hyperbolique. 
650 6 |a Triangle. 
650 6 |a Calcul infinitésimal. 
650 7 |a triangles (polygons)  |2 aat 
650 7 |a calculus.  |2 aat 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Calculus.  |2 fast  |0 (OCoLC)fst00844119 
650 7 |a Geometry, Hyperbolic.  |2 fast  |0 (OCoLC)fst00940922 
650 7 |a Geometry, Plane.  |2 fast  |0 (OCoLC)fst00940930 
650 7 |a Triangle.  |2 fast  |0 (OCoLC)fst01156434 
776 0 8 |i Print version:  |a Ungar, Abraham A.  |t Barycentric calculus in Euclidean and hyperbolic geometry.  |d Singapore ; Hackensack, NJ : World Scientific, ©2010  |z 9789814304931  |w (OCoLC)645707052 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374868  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL731344 
938 |a EBSCOhost  |b EBSC  |n 374868 
938 |a YBP Library Services  |b YANK  |n 6965102 
994 |a 92  |b IZTAP