Cargando…

Advanced Inequalities /

This monograph presents univariate and multivariate classical analyses of advanced inequalities. This treatise is a culmination of the author's last thirteen years of research work. The chapters are self-contained and several advanced courses can be taught out of this book. Extensive background...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Anastassiou, George A., 1952-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Jersey : World Scientific, ©2011.
Colección:Series on concrete and applicable mathematics ; v. 11.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn743217621
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mnu---unuuu
008 110728s2011 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d YDXCP  |d OSU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d NLGGC  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d AGLDB  |d COCUF  |d MOR  |d PIFAG  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d INT  |d VT2  |d OCLCQ  |d ICG  |d TKN  |d OCLCQ  |d LEAUB  |d OCLCO  |d OCLCQ 
019 |a 742516207 
020 |a 9789814317634  |q (electronic bk.) 
020 |a 9814317632  |q (electronic bk.) 
020 |z 9789814317627 
020 |z 9814317624 
029 1 |a AU@  |b 000053272038 
029 1 |a DEBBG  |b BV043133799 
029 1 |a DEBSZ  |b 372822509 
029 1 |a DEBSZ  |b 421583797 
029 1 |a NZ1  |b 14167184 
029 1 |a NZ1  |b 15697159 
035 |a (OCoLC)743217621  |z (OCoLC)742516207 
050 4 |a QA295  |b .A53 2011eb 
072 7 |a MAT  |x 016000  |2 bisacsh 
082 0 4 |a 515.243  |2 23 
049 |a UAMI 
100 1 |a Anastassiou, George A.,  |d 1952- 
245 1 0 |a Advanced Inequalities /  |c George A. Anastassiou. 
260 |a New Jersey :  |b World Scientific,  |c ©2011. 
300 |a 1 online resource (xii, 410 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on concrete and applicable mathematics ;  |v v. 11 
504 |a Includes bibliographical references (pages 395-408) and index. 
588 0 |a Print version record. 
505 0 |a 1. Introduction -- 2. Advanced univariate Ostrowski type inequalities. 2.1. Introduction. 2.2. Auxilliary results. 2.3. Main results -- 3. Higher order Ostrowski inequalities. 3.1. Introduction. 3.2. Main results -- 4. Multidimensional Euler identity and optimal multidimensional Ostrowski inequalities. 4.1. Introduction. 4.2. Background. 4.3. Main results. 4.4. Applications. 4.5. Sharpness -- 5. More on multidimensional Ostrowski type inequalities. 5.1. Introduction. 5.2. Auxilliary results. 5.3. Main results -- 6. Ostrowski inequalities on Euclidean domains. 6.1. Introduction. 6.2. Main results -- 7. High order Ostrowski inequalities on Euclidean domains. 7.1. Introduction. 7.2. Main results. 7.3. Functions on general domains -- 8. Ostrowski inequalities on spherical shells. 8.1. Introduction. 8.2. Main results. 8.3. Addendum -- 9. Ostrowski inequalities on balls and shells via Taylor-Widder formula. 9.1. Introduction. 9.2. Background. 9.3. Results on the shell. 9.4. Results on the sphere. 9.5. Addendum -- 10. Multivariate opial type inequalities for functions vanishing at an interior point. 10.1. Introduction. 10.2. Main results -- 11. General multivariate weighted opial inequalities. 11.1. Introduction. 11.2. Main results -- 12. Opial inequalities for Widder derivatives. 12.1. Introduction. 12.2. Background. 12.3. Results -- 13. Opial inequalities for linear differential operators. 13.1. Background. 13.2. Results -- 14. Opial inequalities for vector valued functions. 14.1. Introduction. 14.2. Background. 14.3. Results. 14.4. Applications -- 15. Opial inequalities for semigroups. 15.1. Introduction. 15.2. Background. 15.3. Results -- 16. Opial inequalities for cosine and sine operator functions. 16.1. Introduction. 16.2. Background. 16.3. Results. 16.4. Applications. 
505 8 |a 17. Poincare like inequalities for linear differential operators. 17.1. Background. 17.2. Results -- 18. Poincare and Sobolev like inequalities for Widder derivatives. 18.1. Background. 18.2. Results -- 19. Poincare and Sobolev like inequalities for vector valued functions. 19.1. Introduction. 19.2. Background. 19.3. Results. 19.4. Applications -- 20. Poincare type inequalities for semigroups, cosine and sine operator functions. 20.1. Introduction. 20.2. Semigroups background. 20.3. Poincare type inequalities for semigroups. 20.4. Cosine and sine operator functions background. 20.5. Poincare type inequalities for cosine and sine operator functions -- 21. Hardy-Opial type inequalities. 21.1. Results -- 22. A basic sharp integral inequality. 22.1. Introduction. 22.2. Results -- 23. Estimates of the remainder in Taylor's formula. 23.1. Introduction. 23.2. Some new bounds for the remainder. 23.3. Some further bounds of the remainder. 23.4. Some inequalities for special cases. 23.5. Taylor-multivariate case estimates -- 24. The distributional Taylor formula. 24.1. Introduction and background. 24.2. Main results. 24.3. Applications -- 25. Chebyshev-Gruss type inequalities using Euler type and fink identities. 25.1. Background. 25.2. Main results -- 26. Gruss type multivariate integral inequalities. 26.1. Introduction. 26.2. Auxiliary result. 26.3. Main results -- 27. Chebyshev-Gruss type inequalities on spherical shells and balls. 27.1. Introduction. 27.2. Main results -- 28. Multivariate Chebyshev-Gruss and comparison of integral means inequalities. 28.1. Background. 28.2. Main results -- 29. Multivariate fink type identity applied to multivariate inequalities. 29.1. Introduction. 29.2. Main results. 29.3. Applications. 
520 |a This monograph presents univariate and multivariate classical analyses of advanced inequalities. This treatise is a culmination of the author's last thirteen years of research work. The chapters are self-contained and several advanced courses can be taught out of this book. Extensive background and motivations are given in each chapter with a comprehensive list of references given at the end. The topics covered are wide-ranging and diverse. Recent advances on Ostrowski type inequalities, Opial type inequalities, Poincare and Sobolev type inequalities, and Hardy-Opial type inequalities are examined. Works on ordinary and distributional Taylor formulae with estimates for their remainders and applications as well as Chebyshev-Gruss, Gruss and comparison of means inequalities are studied. The results presented are mostly optimal, that is the inequalities are sharp and attained. Applications in many areas of pure and applied mathematics, such as mathematical analysis, probability, ordinary and partial differential equations, numerical analysis, information theory, etc., are explored in detail, as such this monograph is suitable for researchers and graduate students. It will be a useful teaching material at seminars as well as an invaluable reference source in all science libraries. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Inequalities (Mathematics) 
650 0 |a Integral inequalities. 
650 0 |a Opial inequalities. 
650 6 |a Inégalités (Mathématiques) 
650 6 |a Inégalités intégrales. 
650 6 |a Inégalités d'Opial. 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a Inequalities (Mathematics)  |2 fast  |0 (OCoLC)fst00972020 
650 7 |a Integral inequalities.  |2 fast  |0 (OCoLC)fst00975513 
650 7 |a Opial inequalities.  |2 fast  |0 (OCoLC)fst01046531 
776 0 8 |i Print version:  |a Anastassiou, George A., 1952-  |t Advanced Inequalities.  |d Singapore ; Hackensack, NJ : World Scientific Publishing Co., ©2011  |z 9789814317627  |w (OCoLC)613430960 
830 0 |a Series on concrete and applicable mathematics ;  |v v. 11. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374881  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10479811 
938 |a EBSCOhost  |b EBSC  |n 374881 
938 |a YBP Library Services  |b YANK  |n 6965140 
994 |a 92  |b IZTAP