Heisenberg's quantum mechanics /
This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; Hackensack, N.J. :
World Scientific,
©2011.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1.1. The Lagrangian and the Hamilton Principle
- 1.2. Noether's Theorem
- 1.3. The Hamiltonian Formulation
- 1.4. Canonical Transformation
- 1.5. Action-Angle Variables
- 1.6. Poisson Brackets
- 1.7. Time Development of Dynamical Variables and Poisson Brackets
- 1.8. Infinitesimal Canonical Transformation
- 1.9. Action Principle with Variable End Points
- 1.10. Symmetry and Degeneracy in Classical Dynamics
- 1.11. Closed Orbits and Accidental Degeneracy
- 1.12. Time-Dependent Exact Invariants
- 2.1. Equivalence of Wave and Matrix Mechanics
- 3.1. Vectors and Vector Spaces
- 3.2. Special Types of Operators
- 3.3. Vector Calculus for the Operators
- 3.4. Construction of Hermitian and Self-Adjoint Operators
- 3.5. Symmetrization Rule
- 3.6. Weyl's Rule
- 3.7. Dirac's Rule
- 3.8. Von Neumann's Rules
- 3.9. Self-Adjoint Operators
- 3.10. Momentum Operator in a Curvilinear Coordinates.
- 14.2. Two Solvable Problems
- 14.3. Time-Dependent Scattering Theory
- 14.4. The Scattering Matrix
- 14.5. The Lippmann[-]Schwinger Equation
- 14.6. Analytical Properties of the Radial Wave Function
- 14.7. The Jost Function
- 14.8. Zeros of the Jost Function and Bound Sates
- 14.9. Dispersion Relation
- 14.10. Central Local Potentials having Identical Phase Shifts and Bound States
- 14.11. The Levinson Theorem
- 14.12. Number of Bound States for a Given Partial Wave
- 14.13. Analyticity of the S-Matrix and the Principle of Casuality
- 14.14. Resonance Scattering
- 14.15. The Born Series
- 14.16. Impact Parameter Representation of the Scattering Amplitude
- 14.17. Determination of the Impact Parameter Phase Shift from the Differential Cross Section
- 14.18. Elastic Scattering of Identical Particles
- 14.19. Transition Probability
- 14.20. Transition Probabilities for Forced Harmonic Oscillator
- 15.1. Diffraction in Time
- 15.2. High Energy Scattering from an Absorptive Target.
- 9.8. The Hydrogen Atom
- 9.9. Calculation of the Energy Eigenvalues Using the Runge[-]Lenz Vector
- 9.10. Classical Limit of Hydrogen Atom
- 9.11. Self-Adjoint Ladder Operator
- 9.12. Self-Adjoint Ladder Operator tiff Angular Momentum
- 9.13. Generalized Spin Operators
- 9.14. The Ladder Operator
- 10.1. Discrete-Time Formulation of the Heisenberg's Equations of Motion
- 10.2. Quantum Tunneling Using Discrete-Time Formulation
- 10.3. Determination of Eigenvalues from Finite-Difference Equations
- 10.4. Systems with Several Degrees of Freedom
- 10.5. Weyl-Ordered Polynomials and Bender[-]Dunne Algebra
- 10.6. Integration of the Operator Differential Equations
- 10.7. Iterative Solution for Polynomial Potentials
- 10.8. Another Numerical Method for the Integration of the Equations of Motion
- 10.9. Motion of a Wave Packet
- 11.1. Perturbation Theory Applied to the Problem of a Quartic Oscillator
- 11.2. Degenerate Perturbation Theory.
- 3.11. Summation Over Normal Modes
- 4.1. The Uncertainty Principle
- 4.2. Application of the Uncertainty Principle for Calculating Bound State Energies
- 4.3. Time-Energy Uncertainty Relation
- 4.4. Uncertainty Relations for Angular Momentum-Angle Variables
- 4.5. Local Heisenberg Inequalities
- 4.6. The Correspondence Principle
- 4.7. Determination of the State of a System
- 5.1. Schwinger's Action Principle and Heisenberg's equations of Motion
- 5.2. Nonuniqueness of the Commutation Relations
- 5.3. First Integrals of Motion
- 6.1. Galilean Invariance
- 6.2. Wave Equation and the Galilean Transformation
- 6.3. Decay Problem in Nonrelativistic Quantum Mechanics and Mass Superselection Rule
- 6.4. Time-Reversal Invariance
- 6.5. Parity of a State
- 6.6. Permutation Symmetry
- 6.7. Lattice Translation
- 6.8. Classical and Quantum Integrability
- 6.9. Classical and Quantum Mechanical Degeneracies
- 7.1. Klein's Method
- 7.2. The Anharmonic Oscillator
- 7.3. The Double-Well Potential.
- 7.4. Chasman's Method
- 7.5. Heisenberg's Equations of Motion for Impulsive Forces
- 7.6. Motion of a Wave Packet
- 7.7. Heisenberg's and Newton's Equations of Motion
- 8.1. Energy Spectrum of the Two-Dimensional Harmonic Oscillator
- 8.2. Exactly Solvable Potentials Obtained from Heisenberg's Equation
- 8.3. Creation and Annihilation Operators
- 8.4. Determination of the Eigenvalues by Factorization Method
- 8.5. A General Method for Factorization
- 8.6. Supersymmetry and Superpotential
- 8.7. Shape Invariant Potentials
- 8.8. Solvable Examples of Periodic Potentials
- 9.1. The Angular Momentum Operator
- 9.2. Determination of the Angular Momentum Eigenvalues
- 9.3. Matrix Elements of Scalars and Vectors and the Selection Rules
- 9.4. Spin Angular Momentum
- 9.5. Angular Momentum Eigenvalues Determined from the Eigenvalues of Two Uncoupled Oscillators
- 9.6. Rotations in Coordinate Space and in Spin Space
- 9.7. Motion of a Particle Inside a Sphere.
- 11.3. Almost Degenerate Perturbation Theory
- 11.4. van der Waals Interaction
- 11.5. Time-Dependent Perturbation Theory
- 11.6. The Adiabatic Approximation
- 11.7. Transition Probability to the First Order
- 12.1. WKB Approximation for Bound States
- 12.2. Approximate Determination of the Eigenvalues for Nonpolynomial Potentials
- 12.3. Generalization of the Semiclassical Approximation to Systems with N Degrees of Freedom
- 12.4. A Variational Method Based on Heisenberg's Equation of Motion
- 12.5. Raleigh[-]Ritz Variational Principle
- 12.6. Tight-Binding Approximation
- 12.7. Heisenberg's Correspondence Principle
- 12.8. Bohr and Heisenberg Correspondence and the Frequencies and Intensities of the Emitted Radiation
- 13.1. Equations of Motion of Finite Order
- 13.2. Equation of Motion of Infinite Order
- 13.3. Classical Expression for the Energy
- 13.4. Energy Eigenvalues when the Equation of Motion is of Infinite Order
- 14.1. Determinantal Method in Potential Scattering.
- 16.1. The Aharonov-Bohm Effect
- 16.2. Time-Dependent Interaction
- 16.3. Harmonic Oscillator with Time-Dependent Frequency
- 16.4. Heisenberg's Equations for Harmonic Oscillator with Time-Dependent Frequency
- 16.5. Neutron Interferometry
- 16.6. Gravity-Induced Quantum Interference
- 16.7. Quantum Beats in Waveguides with Time-Dependent Boundaries
- 16.8. Spin Magnetic Moment
- 16.9. Stern-Gerlach Experiment
- 16.10. Precession of Spin Magnetic Moment in a Constant Magnetic Field
- 16.11. Spin Resonance
- 16.12. A Simple Model of Atomic Clock
- 16.13. Berry's Phase
- 17.1. Ground State of Two-Electron Atom
- 17.2. Hartree and Hartree-Fock Approximations
- 17.3. Second Quantization
- 17.4. Second-Quantized Formulation of the Many-Boson Problem
- 17.5. Many-Fermion Problem
- 17.6. Pair Correlations Between Fermions
- 17.7. Uncertainty Relations for a Many-Fermion System
- 17.8. Pair Correlation Function for Noninteracting Bosons
- 17.9. Bogoliubov Transformation for a Many-Boson System.
- 17.10. Scattering of Two Quasi-Particles
- 17.11. Bogoliubov Transformation for Fermions Interacting through Pairing Forces
- 17.12. Damped Harmonic Oscillator
- 18.1. Coherent State of the Radiation Field
- 18.2. Casimir Force
- 18.3. Casimir Force Between Parallel Conductors
- 18.4. Casimir Force in a Cavity with Conducting Walls
- 19.1. Theory of Natural Line Width
- 19.2. The Lamb Shift
- 19.3. Heisenberg's Equations for Interaction of an Atom with Radiation
- 20.1. EPR Experiment with Particles
- 20.2. Classical and Quantum Mechanical Operational Concepts of Measurement
- 20.3. Collapse of the Wave Function
- 20.4. Quantum versus Classical Correlations.