Cargando…

Heisenberg's quantum mechanics /

This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Razavy, Mohsen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific, ©2011.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1.1. The Lagrangian and the Hamilton Principle
  • 1.2. Noether's Theorem
  • 1.3. The Hamiltonian Formulation
  • 1.4. Canonical Transformation
  • 1.5. Action-Angle Variables
  • 1.6. Poisson Brackets
  • 1.7. Time Development of Dynamical Variables and Poisson Brackets
  • 1.8. Infinitesimal Canonical Transformation
  • 1.9. Action Principle with Variable End Points
  • 1.10. Symmetry and Degeneracy in Classical Dynamics
  • 1.11. Closed Orbits and Accidental Degeneracy
  • 1.12. Time-Dependent Exact Invariants
  • 2.1. Equivalence of Wave and Matrix Mechanics
  • 3.1. Vectors and Vector Spaces
  • 3.2. Special Types of Operators
  • 3.3. Vector Calculus for the Operators
  • 3.4. Construction of Hermitian and Self-Adjoint Operators
  • 3.5. Symmetrization Rule
  • 3.6. Weyl's Rule
  • 3.7. Dirac's Rule
  • 3.8. Von Neumann's Rules
  • 3.9. Self-Adjoint Operators
  • 3.10. Momentum Operator in a Curvilinear Coordinates.
  • 14.2. Two Solvable Problems
  • 14.3. Time-Dependent Scattering Theory
  • 14.4. The Scattering Matrix
  • 14.5. The Lippmann[-]Schwinger Equation
  • 14.6. Analytical Properties of the Radial Wave Function
  • 14.7. The Jost Function
  • 14.8. Zeros of the Jost Function and Bound Sates
  • 14.9. Dispersion Relation
  • 14.10. Central Local Potentials having Identical Phase Shifts and Bound States
  • 14.11. The Levinson Theorem
  • 14.12. Number of Bound States for a Given Partial Wave
  • 14.13. Analyticity of the S-Matrix and the Principle of Casuality
  • 14.14. Resonance Scattering
  • 14.15. The Born Series
  • 14.16. Impact Parameter Representation of the Scattering Amplitude
  • 14.17. Determination of the Impact Parameter Phase Shift from the Differential Cross Section
  • 14.18. Elastic Scattering of Identical Particles
  • 14.19. Transition Probability
  • 14.20. Transition Probabilities for Forced Harmonic Oscillator
  • 15.1. Diffraction in Time
  • 15.2. High Energy Scattering from an Absorptive Target.
  • 9.8. The Hydrogen Atom
  • 9.9. Calculation of the Energy Eigenvalues Using the Runge[-]Lenz Vector
  • 9.10. Classical Limit of Hydrogen Atom
  • 9.11. Self-Adjoint Ladder Operator
  • 9.12. Self-Adjoint Ladder Operator tiff Angular Momentum
  • 9.13. Generalized Spin Operators
  • 9.14. The Ladder Operator
  • 10.1. Discrete-Time Formulation of the Heisenberg's Equations of Motion
  • 10.2. Quantum Tunneling Using Discrete-Time Formulation
  • 10.3. Determination of Eigenvalues from Finite-Difference Equations
  • 10.4. Systems with Several Degrees of Freedom
  • 10.5. Weyl-Ordered Polynomials and Bender[-]Dunne Algebra
  • 10.6. Integration of the Operator Differential Equations
  • 10.7. Iterative Solution for Polynomial Potentials
  • 10.8. Another Numerical Method for the Integration of the Equations of Motion
  • 10.9. Motion of a Wave Packet
  • 11.1. Perturbation Theory Applied to the Problem of a Quartic Oscillator
  • 11.2. Degenerate Perturbation Theory.
  • 3.11. Summation Over Normal Modes
  • 4.1. The Uncertainty Principle
  • 4.2. Application of the Uncertainty Principle for Calculating Bound State Energies
  • 4.3. Time-Energy Uncertainty Relation
  • 4.4. Uncertainty Relations for Angular Momentum-Angle Variables
  • 4.5. Local Heisenberg Inequalities
  • 4.6. The Correspondence Principle
  • 4.7. Determination of the State of a System
  • 5.1. Schwinger's Action Principle and Heisenberg's equations of Motion
  • 5.2. Nonuniqueness of the Commutation Relations
  • 5.3. First Integrals of Motion
  • 6.1. Galilean Invariance
  • 6.2. Wave Equation and the Galilean Transformation
  • 6.3. Decay Problem in Nonrelativistic Quantum Mechanics and Mass Superselection Rule
  • 6.4. Time-Reversal Invariance
  • 6.5. Parity of a State
  • 6.6. Permutation Symmetry
  • 6.7. Lattice Translation
  • 6.8. Classical and Quantum Integrability
  • 6.9. Classical and Quantum Mechanical Degeneracies
  • 7.1. Klein's Method
  • 7.2. The Anharmonic Oscillator
  • 7.3. The Double-Well Potential.
  • 7.4. Chasman's Method
  • 7.5. Heisenberg's Equations of Motion for Impulsive Forces
  • 7.6. Motion of a Wave Packet
  • 7.7. Heisenberg's and Newton's Equations of Motion
  • 8.1. Energy Spectrum of the Two-Dimensional Harmonic Oscillator
  • 8.2. Exactly Solvable Potentials Obtained from Heisenberg's Equation
  • 8.3. Creation and Annihilation Operators
  • 8.4. Determination of the Eigenvalues by Factorization Method
  • 8.5. A General Method for Factorization
  • 8.6. Supersymmetry and Superpotential
  • 8.7. Shape Invariant Potentials
  • 8.8. Solvable Examples of Periodic Potentials
  • 9.1. The Angular Momentum Operator
  • 9.2. Determination of the Angular Momentum Eigenvalues
  • 9.3. Matrix Elements of Scalars and Vectors and the Selection Rules
  • 9.4. Spin Angular Momentum
  • 9.5. Angular Momentum Eigenvalues Determined from the Eigenvalues of Two Uncoupled Oscillators
  • 9.6. Rotations in Coordinate Space and in Spin Space
  • 9.7. Motion of a Particle Inside a Sphere.
  • 11.3. Almost Degenerate Perturbation Theory
  • 11.4. van der Waals Interaction
  • 11.5. Time-Dependent Perturbation Theory
  • 11.6. The Adiabatic Approximation
  • 11.7. Transition Probability to the First Order
  • 12.1. WKB Approximation for Bound States
  • 12.2. Approximate Determination of the Eigenvalues for Nonpolynomial Potentials
  • 12.3. Generalization of the Semiclassical Approximation to Systems with N Degrees of Freedom
  • 12.4. A Variational Method Based on Heisenberg's Equation of Motion
  • 12.5. Raleigh[-]Ritz Variational Principle
  • 12.6. Tight-Binding Approximation
  • 12.7. Heisenberg's Correspondence Principle
  • 12.8. Bohr and Heisenberg Correspondence and the Frequencies and Intensities of the Emitted Radiation
  • 13.1. Equations of Motion of Finite Order
  • 13.2. Equation of Motion of Infinite Order
  • 13.3. Classical Expression for the Energy
  • 13.4. Energy Eigenvalues when the Equation of Motion is of Infinite Order
  • 14.1. Determinantal Method in Potential Scattering.
  • 16.1. The Aharonov-Bohm Effect
  • 16.2. Time-Dependent Interaction
  • 16.3. Harmonic Oscillator with Time-Dependent Frequency
  • 16.4. Heisenberg's Equations for Harmonic Oscillator with Time-Dependent Frequency
  • 16.5. Neutron Interferometry
  • 16.6. Gravity-Induced Quantum Interference
  • 16.7. Quantum Beats in Waveguides with Time-Dependent Boundaries
  • 16.8. Spin Magnetic Moment
  • 16.9. Stern-Gerlach Experiment
  • 16.10. Precession of Spin Magnetic Moment in a Constant Magnetic Field
  • 16.11. Spin Resonance
  • 16.12. A Simple Model of Atomic Clock
  • 16.13. Berry's Phase
  • 17.1. Ground State of Two-Electron Atom
  • 17.2. Hartree and Hartree-Fock Approximations
  • 17.3. Second Quantization
  • 17.4. Second-Quantized Formulation of the Many-Boson Problem
  • 17.5. Many-Fermion Problem
  • 17.6. Pair Correlations Between Fermions
  • 17.7. Uncertainty Relations for a Many-Fermion System
  • 17.8. Pair Correlation Function for Noninteracting Bosons
  • 17.9. Bogoliubov Transformation for a Many-Boson System.
  • 17.10. Scattering of Two Quasi-Particles
  • 17.11. Bogoliubov Transformation for Fermions Interacting through Pairing Forces
  • 17.12. Damped Harmonic Oscillator
  • 18.1. Coherent State of the Radiation Field
  • 18.2. Casimir Force
  • 18.3. Casimir Force Between Parallel Conductors
  • 18.4. Casimir Force in a Cavity with Conducting Walls
  • 19.1. Theory of Natural Line Width
  • 19.2. The Lamb Shift
  • 19.3. Heisenberg's Equations for Interaction of an Atom with Radiation
  • 20.1. EPR Experiment with Particles
  • 20.2. Classical and Quantum Mechanical Operational Concepts of Measurement
  • 20.3. Collapse of the Wave Function
  • 20.4. Quantum versus Classical Correlations.