Cargando…

Heisenberg's quantum mechanics /

This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Razavy, Mohsen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific, ©2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn742633342
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110726s2011 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d YDXCP  |d OUP  |d UIU  |d OCLCQ  |d OCLCF  |d NLGGC  |d EBLCP  |d IDEBK  |d DEBSZ  |d OCLCQ  |d S3O  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d OCLCQ  |d DKC  |d OCLCQ  |d HS0  |d OCLCQ  |d LEAUB  |d UKCRE  |d VLY  |d UIU  |d OCLCO  |d OCLCQ 
015 |a GBB079481  |2 bnb 
015 |a GBB079480  |2 bnb 
016 7 |a 015590241  |2 Uk 
016 7 |a 015590240  |2 Uk 
019 |a 741455147  |a 742333499  |a 1014031244  |a 1055366294  |a 1066437562  |a 1081275425  |a 1086425175  |a 1148168166  |a 1162525098  |a 1228535065  |a 1241786512 
020 |a 9789814304122  |q (electronic bk.) 
020 |a 9814304123  |q (electronic bk.) 
020 |z 9789814304115 
020 |z 9814304115 
020 |z 9814304107 
020 |z 9789814304108 
020 |a 9781283148399 
020 |a 1283148390 
020 |a 9786613148391 
020 |a 6613148393 
029 1 |a AU@  |b 000047752797 
029 1 |a AU@  |b 000051431487 
029 1 |a DEBBG  |b BV043124794 
029 1 |a DEBBG  |b BV044156593 
029 1 |a DEBSZ  |b 379322811 
029 1 |a DEBSZ  |b 421586648 
029 1 |a DEBSZ  |b 454996330 
029 1 |a GBVCP  |b 803612540 
035 |a (OCoLC)742633342  |z (OCoLC)741455147  |z (OCoLC)742333499  |z (OCoLC)1014031244  |z (OCoLC)1055366294  |z (OCoLC)1066437562  |z (OCoLC)1081275425  |z (OCoLC)1086425175  |z (OCoLC)1148168166  |z (OCoLC)1162525098  |z (OCoLC)1228535065  |z (OCoLC)1241786512 
050 4 |a QC174.12  |b .R39 2011eb 
072 7 |a SCI  |x 057000  |2 bisacsh 
072 7 |a PHQ  |2 bicssc 
082 0 4 |a 530.12  |2 23 
049 |a UAMI 
100 1 |a Razavy, Mohsen. 
245 1 0 |a Heisenberg's quantum mechanics /  |c Mohsen Razavy. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific,  |c ©2011. 
300 |a 1 online resource (xix, 657 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 0 |g Machine generated contents note:  |g 1.1.  |t The Lagrangian and the Hamilton Principle --  |g 1.2.  |t Noether's Theorem --  |g 1.3.  |t The Hamiltonian Formulation --  |g 1.4.  |t Canonical Transformation --  |g 1.5.  |t Action-Angle Variables --  |g 1.6.  |t Poisson Brackets --  |g 1.7.  |t Time Development of Dynamical Variables and Poisson Brackets --  |g 1.8.  |t Infinitesimal Canonical Transformation --  |g 1.9.  |t Action Principle with Variable End Points --  |g 1.10.  |t Symmetry and Degeneracy in Classical Dynamics --  |g 1.11.  |t Closed Orbits and Accidental Degeneracy --  |g 1.12.  |t Time-Dependent Exact Invariants --  |g 2.1.  |t Equivalence of Wave and Matrix Mechanics --  |g 3.1.  |t Vectors and Vector Spaces --  |g 3.2.  |t Special Types of Operators --  |g 3.3.  |t Vector Calculus for the Operators --  |g 3.4.  |t Construction of Hermitian and Self-Adjoint Operators --  |g 3.5.  |t Symmetrization Rule --  |g 3.6.  |t Weyl's Rule --  |g 3.7.  |t Dirac's Rule --  |g 3.8.  |t Von Neumann's Rules --  |g 3.9.  |t Self-Adjoint Operators --  |g 3.10.  |t Momentum Operator in a Curvilinear Coordinates. 
505 0 0 |g 14.2.  |t Two Solvable Problems --  |g 14.3.  |t Time-Dependent Scattering Theory --  |g 14.4.  |t The Scattering Matrix --  |g 14.5.  |t The Lippmann[-]Schwinger Equation --  |g 14.6.  |t Analytical Properties of the Radial Wave Function --  |g 14.7.  |t The Jost Function --  |g 14.8.  |t Zeros of the Jost Function and Bound Sates --  |g 14.9.  |t Dispersion Relation --  |g 14.10.  |t Central Local Potentials having Identical Phase Shifts and Bound States --  |g 14.11.  |t The Levinson Theorem --  |g 14.12.  |t Number of Bound States for a Given Partial Wave --  |g 14.13.  |t Analyticity of the S-Matrix and the Principle of Casuality --  |g 14.14.  |t Resonance Scattering --  |g 14.15.  |t The Born Series --  |g 14.16.  |t Impact Parameter Representation of the Scattering Amplitude --  |g 14.17.  |t Determination of the Impact Parameter Phase Shift from the Differential Cross Section --  |g 14.18.  |t Elastic Scattering of Identical Particles --  |g 14.19.  |t Transition Probability --  |g 14.20.  |t Transition Probabilities for Forced Harmonic Oscillator --  |g 15.1.  |t Diffraction in Time --  |g 15.2.  |t High Energy Scattering from an Absorptive Target. 
505 0 0 |g 9.8.  |t The Hydrogen Atom --  |g 9.9.  |t Calculation of the Energy Eigenvalues Using the Runge[-]Lenz Vector --  |g 9.10.  |t Classical Limit of Hydrogen Atom --  |g 9.11.  |t Self-Adjoint Ladder Operator --  |g 9.12.  |t Self-Adjoint Ladder Operator tiff Angular Momentum --  |g 9.13.  |t Generalized Spin Operators --  |g 9.14.  |t The Ladder Operator --  |g 10.1.  |t Discrete-Time Formulation of the Heisenberg's Equations of Motion --  |g 10.2.  |t Quantum Tunneling Using Discrete-Time Formulation --  |g 10.3.  |t Determination of Eigenvalues from Finite-Difference Equations --  |g 10.4.  |t Systems with Several Degrees of Freedom --  |g 10.5.  |t Weyl-Ordered Polynomials and Bender[-]Dunne Algebra --  |g 10.6.  |t Integration of the Operator Differential Equations --  |g 10.7.  |t Iterative Solution for Polynomial Potentials --  |g 10.8.  |t Another Numerical Method for the Integration of the Equations of Motion --  |g 10.9.  |t Motion of a Wave Packet --  |g 11.1.  |t Perturbation Theory Applied to the Problem of a Quartic Oscillator --  |g 11.2.  |t Degenerate Perturbation Theory. 
505 0 0 |g 3.11.  |t Summation Over Normal Modes --  |g 4.1.  |t The Uncertainty Principle --  |g 4.2.  |t Application of the Uncertainty Principle for Calculating Bound State Energies --  |g 4.3.  |t Time-Energy Uncertainty Relation --  |g 4.4.  |t Uncertainty Relations for Angular Momentum-Angle Variables --  |g 4.5.  |t Local Heisenberg Inequalities --  |g 4.6.  |t The Correspondence Principle --  |g 4.7.  |t Determination of the State of a System --  |g 5.1.  |t Schwinger's Action Principle and Heisenberg's equations of Motion --  |g 5.2.  |t Nonuniqueness of the Commutation Relations --  |g 5.3.  |t First Integrals of Motion --  |g 6.1.  |t Galilean Invariance --  |g 6.2.  |t Wave Equation and the Galilean Transformation --  |g 6.3.  |t Decay Problem in Nonrelativistic Quantum Mechanics and Mass Superselection Rule --  |g 6.4.  |t Time-Reversal Invariance --  |g 6.5.  |t Parity of a State --  |g 6.6.  |t Permutation Symmetry --  |g 6.7.  |t Lattice Translation --  |g 6.8.  |t Classical and Quantum Integrability --  |g 6.9.  |t Classical and Quantum Mechanical Degeneracies --  |g 7.1.  |t Klein's Method --  |g 7.2.  |t The Anharmonic Oscillator --  |g 7.3.  |t The Double-Well Potential. 
505 0 0 |g 7.4.  |t Chasman's Method --  |g 7.5.  |t Heisenberg's Equations of Motion for Impulsive Forces --  |g 7.6.  |t Motion of a Wave Packet --  |g 7.7.  |t Heisenberg's and Newton's Equations of Motion --  |g 8.1.  |t Energy Spectrum of the Two-Dimensional Harmonic Oscillator --  |g 8.2.  |t Exactly Solvable Potentials Obtained from Heisenberg's Equation --  |g 8.3.  |t Creation and Annihilation Operators --  |g 8.4.  |t Determination of the Eigenvalues by Factorization Method --  |g 8.5.  |t A General Method for Factorization --  |g 8.6.  |t Supersymmetry and Superpotential --  |g 8.7.  |t Shape Invariant Potentials --  |g 8.8.  |t Solvable Examples of Periodic Potentials --  |g 9.1.  |t The Angular Momentum Operator --  |g 9.2.  |t Determination of the Angular Momentum Eigenvalues --  |g 9.3.  |t Matrix Elements of Scalars and Vectors and the Selection Rules --  |g 9.4.  |t Spin Angular Momentum --  |g 9.5.  |t Angular Momentum Eigenvalues Determined from the Eigenvalues of Two Uncoupled Oscillators --  |g 9.6.  |t Rotations in Coordinate Space and in Spin Space --  |g 9.7.  |t Motion of a Particle Inside a Sphere. 
505 0 0 |g 11.3.  |t Almost Degenerate Perturbation Theory --  |g 11.4.  |t van der Waals Interaction --  |g 11.5.  |t Time-Dependent Perturbation Theory --  |g 11.6.  |t The Adiabatic Approximation --  |g 11.7.  |t Transition Probability to the First Order --  |g 12.1.  |t WKB Approximation for Bound States --  |g 12.2.  |t Approximate Determination of the Eigenvalues for Nonpolynomial Potentials --  |g 12.3.  |t Generalization of the Semiclassical Approximation to Systems with N Degrees of Freedom --  |g 12.4.  |t A Variational Method Based on Heisenberg's Equation of Motion --  |g 12.5.  |t Raleigh[-]Ritz Variational Principle --  |g 12.6.  |t Tight-Binding Approximation --  |g 12.7.  |t Heisenberg's Correspondence Principle --  |g 12.8.  |t Bohr and Heisenberg Correspondence and the Frequencies and Intensities of the Emitted Radiation --  |g 13.1.  |t Equations of Motion of Finite Order --  |g 13.2.  |t Equation of Motion of Infinite Order --  |g 13.3.  |t Classical Expression for the Energy --  |g 13.4.  |t Energy Eigenvalues when the Equation of Motion is of Infinite Order --  |g 14.1.  |t Determinantal Method in Potential Scattering. 
505 0 0 |g 16.1.  |t The Aharonov-Bohm Effect --  |g 16.2.  |t Time-Dependent Interaction --  |g 16.3.  |t Harmonic Oscillator with Time-Dependent Frequency --  |g 16.4.  |t Heisenberg's Equations for Harmonic Oscillator with Time-Dependent Frequency --  |g 16.5.  |t Neutron Interferometry --  |g 16.6.  |t Gravity-Induced Quantum Interference --  |g 16.7.  |t Quantum Beats in Waveguides with Time-Dependent Boundaries --  |g 16.8.  |t Spin Magnetic Moment --  |g 16.9.  |t Stern-Gerlach Experiment --  |g 16.10.  |t Precession of Spin Magnetic Moment in a Constant Magnetic Field --  |g 16.11.  |t Spin Resonance --  |g 16.12.  |t A Simple Model of Atomic Clock --  |g 16.13.  |t Berry's Phase --  |g 17.1.  |t Ground State of Two-Electron Atom --  |g 17.2.  |t Hartree and Hartree-Fock Approximations --  |g 17.3.  |t Second Quantization --  |g 17.4.  |t Second-Quantized Formulation of the Many-Boson Problem --  |g 17.5.  |t Many-Fermion Problem --  |g 17.6.  |t Pair Correlations Between Fermions --  |g 17.7.  |t Uncertainty Relations for a Many-Fermion System --  |g 17.8.  |t Pair Correlation Function for Noninteracting Bosons --  |g 17.9.  |t Bogoliubov Transformation for a Many-Boson System. 
505 0 0 |g 17.10.  |t Scattering of Two Quasi-Particles --  |g 17.11.  |t Bogoliubov Transformation for Fermions Interacting through Pairing Forces --  |g 17.12.  |t Damped Harmonic Oscillator --  |g 18.1.  |t Coherent State of the Radiation Field --  |g 18.2.  |t Casimir Force --  |g 18.3.  |t Casimir Force Between Parallel Conductors --  |g 18.4.  |t Casimir Force in a Cavity with Conducting Walls --  |g 19.1.  |t Theory of Natural Line Width --  |g 19.2.  |t The Lamb Shift --  |g 19.3.  |t Heisenberg's Equations for Interaction of an Atom with Radiation --  |g 20.1.  |t EPR Experiment with Particles --  |g 20.2.  |t Classical and Quantum Mechanical Operational Concepts of Measurement --  |g 20.3.  |t Collapse of the Wave Function --  |g 20.4.  |t Quantum versus Classical Correlations. 
520 |a This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method. 
520 |a The book features a deeper treatment of the fundamental concepts such as the rules of constructing quantum mechanical operators and the classical-quantal correspondence; the exact and approximate methods based on the Heisenberg equations; the determinantal approach to the scattering theory and the LSZ reduction formalism where the latter method is used to obtain the transition matrix. The uncertainty relations for a number of different observables are derived and discussed. A comprehensive chapter on the quantization of systems with nonlocalized interaction is included. Exact solvable models, and approximate techniques for solution of realistic many-body problems are also considered. The book takes a unified look in the final chapter, examining the question of measurement in quantum theory, with an introduction to the Bell's inequalities. --Book Jacket. 
588 0 |a Print version record. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Quantum theory. 
650 6 |a Théorie quantique. 
650 7 |a SCIENCE  |x Physics  |x Quantum Theory.  |2 bisacsh 
650 7 |a Quantum theory.  |2 fast  |0 (OCoLC)fst01085128 
776 0 8 |i Print version:  |a Razavy, Mohsen.  |t Heisenberg's quantum mechanics.  |d Singapore ; Hackensack, N.J. : World Scientific, ©2011  |z 9789814304115  |z 9814304115  |w (OCoLC)496957986 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373246  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL737639 
938 |a EBSCOhost  |b EBSC  |n 373246 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 314839 
938 |a YBP Library Services  |b YANK  |n 6965092 
994 |a 92  |b IZTAP