|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn742633342 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
110726s2011 si a ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d YDXCP
|d OUP
|d UIU
|d OCLCQ
|d OCLCF
|d NLGGC
|d EBLCP
|d IDEBK
|d DEBSZ
|d OCLCQ
|d S3O
|d OCLCQ
|d MERUC
|d OCLCQ
|d U3W
|d VTS
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d JBG
|d OCLCQ
|d DKC
|d OCLCQ
|d HS0
|d OCLCQ
|d LEAUB
|d UKCRE
|d VLY
|d UIU
|d OCLCO
|d OCLCQ
|
015 |
|
|
|a GBB079481
|2 bnb
|
015 |
|
|
|a GBB079480
|2 bnb
|
016 |
7 |
|
|a 015590241
|2 Uk
|
016 |
7 |
|
|a 015590240
|2 Uk
|
019 |
|
|
|a 741455147
|a 742333499
|a 1014031244
|a 1055366294
|a 1066437562
|a 1081275425
|a 1086425175
|a 1148168166
|a 1162525098
|a 1228535065
|a 1241786512
|
020 |
|
|
|a 9789814304122
|q (electronic bk.)
|
020 |
|
|
|a 9814304123
|q (electronic bk.)
|
020 |
|
|
|z 9789814304115
|
020 |
|
|
|z 9814304115
|
020 |
|
|
|z 9814304107
|
020 |
|
|
|z 9789814304108
|
020 |
|
|
|a 9781283148399
|
020 |
|
|
|a 1283148390
|
020 |
|
|
|a 9786613148391
|
020 |
|
|
|a 6613148393
|
029 |
1 |
|
|a AU@
|b 000047752797
|
029 |
1 |
|
|a AU@
|b 000051431487
|
029 |
1 |
|
|a DEBBG
|b BV043124794
|
029 |
1 |
|
|a DEBBG
|b BV044156593
|
029 |
1 |
|
|a DEBSZ
|b 379322811
|
029 |
1 |
|
|a DEBSZ
|b 421586648
|
029 |
1 |
|
|a DEBSZ
|b 454996330
|
029 |
1 |
|
|a GBVCP
|b 803612540
|
035 |
|
|
|a (OCoLC)742633342
|z (OCoLC)741455147
|z (OCoLC)742333499
|z (OCoLC)1014031244
|z (OCoLC)1055366294
|z (OCoLC)1066437562
|z (OCoLC)1081275425
|z (OCoLC)1086425175
|z (OCoLC)1148168166
|z (OCoLC)1162525098
|z (OCoLC)1228535065
|z (OCoLC)1241786512
|
050 |
|
4 |
|a QC174.12
|b .R39 2011eb
|
072 |
|
7 |
|a SCI
|x 057000
|2 bisacsh
|
072 |
|
7 |
|a PHQ
|2 bicssc
|
082 |
0 |
4 |
|a 530.12
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Razavy, Mohsen.
|
245 |
1 |
0 |
|a Heisenberg's quantum mechanics /
|c Mohsen Razavy.
|
260 |
|
|
|a Singapore ;
|a Hackensack, N.J. :
|b World Scientific,
|c ©2011.
|
300 |
|
|
|a 1 online resource (xix, 657 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|g Machine generated contents note:
|g 1.1.
|t The Lagrangian and the Hamilton Principle --
|g 1.2.
|t Noether's Theorem --
|g 1.3.
|t The Hamiltonian Formulation --
|g 1.4.
|t Canonical Transformation --
|g 1.5.
|t Action-Angle Variables --
|g 1.6.
|t Poisson Brackets --
|g 1.7.
|t Time Development of Dynamical Variables and Poisson Brackets --
|g 1.8.
|t Infinitesimal Canonical Transformation --
|g 1.9.
|t Action Principle with Variable End Points --
|g 1.10.
|t Symmetry and Degeneracy in Classical Dynamics --
|g 1.11.
|t Closed Orbits and Accidental Degeneracy --
|g 1.12.
|t Time-Dependent Exact Invariants --
|g 2.1.
|t Equivalence of Wave and Matrix Mechanics --
|g 3.1.
|t Vectors and Vector Spaces --
|g 3.2.
|t Special Types of Operators --
|g 3.3.
|t Vector Calculus for the Operators --
|g 3.4.
|t Construction of Hermitian and Self-Adjoint Operators --
|g 3.5.
|t Symmetrization Rule --
|g 3.6.
|t Weyl's Rule --
|g 3.7.
|t Dirac's Rule --
|g 3.8.
|t Von Neumann's Rules --
|g 3.9.
|t Self-Adjoint Operators --
|g 3.10.
|t Momentum Operator in a Curvilinear Coordinates.
|
505 |
0 |
0 |
|g 14.2.
|t Two Solvable Problems --
|g 14.3.
|t Time-Dependent Scattering Theory --
|g 14.4.
|t The Scattering Matrix --
|g 14.5.
|t The Lippmann[-]Schwinger Equation --
|g 14.6.
|t Analytical Properties of the Radial Wave Function --
|g 14.7.
|t The Jost Function --
|g 14.8.
|t Zeros of the Jost Function and Bound Sates --
|g 14.9.
|t Dispersion Relation --
|g 14.10.
|t Central Local Potentials having Identical Phase Shifts and Bound States --
|g 14.11.
|t The Levinson Theorem --
|g 14.12.
|t Number of Bound States for a Given Partial Wave --
|g 14.13.
|t Analyticity of the S-Matrix and the Principle of Casuality --
|g 14.14.
|t Resonance Scattering --
|g 14.15.
|t The Born Series --
|g 14.16.
|t Impact Parameter Representation of the Scattering Amplitude --
|g 14.17.
|t Determination of the Impact Parameter Phase Shift from the Differential Cross Section --
|g 14.18.
|t Elastic Scattering of Identical Particles --
|g 14.19.
|t Transition Probability --
|g 14.20.
|t Transition Probabilities for Forced Harmonic Oscillator --
|g 15.1.
|t Diffraction in Time --
|g 15.2.
|t High Energy Scattering from an Absorptive Target.
|
505 |
0 |
0 |
|g 9.8.
|t The Hydrogen Atom --
|g 9.9.
|t Calculation of the Energy Eigenvalues Using the Runge[-]Lenz Vector --
|g 9.10.
|t Classical Limit of Hydrogen Atom --
|g 9.11.
|t Self-Adjoint Ladder Operator --
|g 9.12.
|t Self-Adjoint Ladder Operator tiff Angular Momentum --
|g 9.13.
|t Generalized Spin Operators --
|g 9.14.
|t The Ladder Operator --
|g 10.1.
|t Discrete-Time Formulation of the Heisenberg's Equations of Motion --
|g 10.2.
|t Quantum Tunneling Using Discrete-Time Formulation --
|g 10.3.
|t Determination of Eigenvalues from Finite-Difference Equations --
|g 10.4.
|t Systems with Several Degrees of Freedom --
|g 10.5.
|t Weyl-Ordered Polynomials and Bender[-]Dunne Algebra --
|g 10.6.
|t Integration of the Operator Differential Equations --
|g 10.7.
|t Iterative Solution for Polynomial Potentials --
|g 10.8.
|t Another Numerical Method for the Integration of the Equations of Motion --
|g 10.9.
|t Motion of a Wave Packet --
|g 11.1.
|t Perturbation Theory Applied to the Problem of a Quartic Oscillator --
|g 11.2.
|t Degenerate Perturbation Theory.
|
505 |
0 |
0 |
|g 3.11.
|t Summation Over Normal Modes --
|g 4.1.
|t The Uncertainty Principle --
|g 4.2.
|t Application of the Uncertainty Principle for Calculating Bound State Energies --
|g 4.3.
|t Time-Energy Uncertainty Relation --
|g 4.4.
|t Uncertainty Relations for Angular Momentum-Angle Variables --
|g 4.5.
|t Local Heisenberg Inequalities --
|g 4.6.
|t The Correspondence Principle --
|g 4.7.
|t Determination of the State of a System --
|g 5.1.
|t Schwinger's Action Principle and Heisenberg's equations of Motion --
|g 5.2.
|t Nonuniqueness of the Commutation Relations --
|g 5.3.
|t First Integrals of Motion --
|g 6.1.
|t Galilean Invariance --
|g 6.2.
|t Wave Equation and the Galilean Transformation --
|g 6.3.
|t Decay Problem in Nonrelativistic Quantum Mechanics and Mass Superselection Rule --
|g 6.4.
|t Time-Reversal Invariance --
|g 6.5.
|t Parity of a State --
|g 6.6.
|t Permutation Symmetry --
|g 6.7.
|t Lattice Translation --
|g 6.8.
|t Classical and Quantum Integrability --
|g 6.9.
|t Classical and Quantum Mechanical Degeneracies --
|g 7.1.
|t Klein's Method --
|g 7.2.
|t The Anharmonic Oscillator --
|g 7.3.
|t The Double-Well Potential.
|
505 |
0 |
0 |
|g 7.4.
|t Chasman's Method --
|g 7.5.
|t Heisenberg's Equations of Motion for Impulsive Forces --
|g 7.6.
|t Motion of a Wave Packet --
|g 7.7.
|t Heisenberg's and Newton's Equations of Motion --
|g 8.1.
|t Energy Spectrum of the Two-Dimensional Harmonic Oscillator --
|g 8.2.
|t Exactly Solvable Potentials Obtained from Heisenberg's Equation --
|g 8.3.
|t Creation and Annihilation Operators --
|g 8.4.
|t Determination of the Eigenvalues by Factorization Method --
|g 8.5.
|t A General Method for Factorization --
|g 8.6.
|t Supersymmetry and Superpotential --
|g 8.7.
|t Shape Invariant Potentials --
|g 8.8.
|t Solvable Examples of Periodic Potentials --
|g 9.1.
|t The Angular Momentum Operator --
|g 9.2.
|t Determination of the Angular Momentum Eigenvalues --
|g 9.3.
|t Matrix Elements of Scalars and Vectors and the Selection Rules --
|g 9.4.
|t Spin Angular Momentum --
|g 9.5.
|t Angular Momentum Eigenvalues Determined from the Eigenvalues of Two Uncoupled Oscillators --
|g 9.6.
|t Rotations in Coordinate Space and in Spin Space --
|g 9.7.
|t Motion of a Particle Inside a Sphere.
|
505 |
0 |
0 |
|g 11.3.
|t Almost Degenerate Perturbation Theory --
|g 11.4.
|t van der Waals Interaction --
|g 11.5.
|t Time-Dependent Perturbation Theory --
|g 11.6.
|t The Adiabatic Approximation --
|g 11.7.
|t Transition Probability to the First Order --
|g 12.1.
|t WKB Approximation for Bound States --
|g 12.2.
|t Approximate Determination of the Eigenvalues for Nonpolynomial Potentials --
|g 12.3.
|t Generalization of the Semiclassical Approximation to Systems with N Degrees of Freedom --
|g 12.4.
|t A Variational Method Based on Heisenberg's Equation of Motion --
|g 12.5.
|t Raleigh[-]Ritz Variational Principle --
|g 12.6.
|t Tight-Binding Approximation --
|g 12.7.
|t Heisenberg's Correspondence Principle --
|g 12.8.
|t Bohr and Heisenberg Correspondence and the Frequencies and Intensities of the Emitted Radiation --
|g 13.1.
|t Equations of Motion of Finite Order --
|g 13.2.
|t Equation of Motion of Infinite Order --
|g 13.3.
|t Classical Expression for the Energy --
|g 13.4.
|t Energy Eigenvalues when the Equation of Motion is of Infinite Order --
|g 14.1.
|t Determinantal Method in Potential Scattering.
|
505 |
0 |
0 |
|g 16.1.
|t The Aharonov-Bohm Effect --
|g 16.2.
|t Time-Dependent Interaction --
|g 16.3.
|t Harmonic Oscillator with Time-Dependent Frequency --
|g 16.4.
|t Heisenberg's Equations for Harmonic Oscillator with Time-Dependent Frequency --
|g 16.5.
|t Neutron Interferometry --
|g 16.6.
|t Gravity-Induced Quantum Interference --
|g 16.7.
|t Quantum Beats in Waveguides with Time-Dependent Boundaries --
|g 16.8.
|t Spin Magnetic Moment --
|g 16.9.
|t Stern-Gerlach Experiment --
|g 16.10.
|t Precession of Spin Magnetic Moment in a Constant Magnetic Field --
|g 16.11.
|t Spin Resonance --
|g 16.12.
|t A Simple Model of Atomic Clock --
|g 16.13.
|t Berry's Phase --
|g 17.1.
|t Ground State of Two-Electron Atom --
|g 17.2.
|t Hartree and Hartree-Fock Approximations --
|g 17.3.
|t Second Quantization --
|g 17.4.
|t Second-Quantized Formulation of the Many-Boson Problem --
|g 17.5.
|t Many-Fermion Problem --
|g 17.6.
|t Pair Correlations Between Fermions --
|g 17.7.
|t Uncertainty Relations for a Many-Fermion System --
|g 17.8.
|t Pair Correlation Function for Noninteracting Bosons --
|g 17.9.
|t Bogoliubov Transformation for a Many-Boson System.
|
505 |
0 |
0 |
|g 17.10.
|t Scattering of Two Quasi-Particles --
|g 17.11.
|t Bogoliubov Transformation for Fermions Interacting through Pairing Forces --
|g 17.12.
|t Damped Harmonic Oscillator --
|g 18.1.
|t Coherent State of the Radiation Field --
|g 18.2.
|t Casimir Force --
|g 18.3.
|t Casimir Force Between Parallel Conductors --
|g 18.4.
|t Casimir Force in a Cavity with Conducting Walls --
|g 19.1.
|t Theory of Natural Line Width --
|g 19.2.
|t The Lamb Shift --
|g 19.3.
|t Heisenberg's Equations for Interaction of an Atom with Radiation --
|g 20.1.
|t EPR Experiment with Particles --
|g 20.2.
|t Classical and Quantum Mechanical Operational Concepts of Measurement --
|g 20.3.
|t Collapse of the Wave Function --
|g 20.4.
|t Quantum versus Classical Correlations.
|
520 |
|
|
|a This book provides a detailed account of quantum theory with a much greater emphasis on the Heisenberg equations of motion and the matrix method.
|
520 |
|
|
|a The book features a deeper treatment of the fundamental concepts such as the rules of constructing quantum mechanical operators and the classical-quantal correspondence; the exact and approximate methods based on the Heisenberg equations; the determinantal approach to the scattering theory and the LSZ reduction formalism where the latter method is used to obtain the transition matrix. The uncertainty relations for a number of different observables are derived and discussed. A comprehensive chapter on the quantization of systems with nonlocalized interaction is included. Exact solvable models, and approximate techniques for solution of realistic many-body problems are also considered. The book takes a unified look in the final chapter, examining the question of measurement in quantum theory, with an introduction to the Bell's inequalities. --Book Jacket.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Quantum theory.
|
650 |
|
6 |
|a Théorie quantique.
|
650 |
|
7 |
|a SCIENCE
|x Physics
|x Quantum Theory.
|2 bisacsh
|
650 |
|
7 |
|a Quantum theory.
|2 fast
|0 (OCoLC)fst01085128
|
776 |
0 |
8 |
|i Print version:
|a Razavy, Mohsen.
|t Heisenberg's quantum mechanics.
|d Singapore ; Hackensack, N.J. : World Scientific, ©2011
|z 9789814304115
|z 9814304115
|w (OCoLC)496957986
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373246
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL737639
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 373246
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 314839
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 6965092
|
994 |
|
|
|a 92
|b IZTAP
|