Cargando…

Stochastic simulation optimization : an optimal computing budget allocation /

With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chen, Chun-hung
Otros Autores: Lee, Loo Hay
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2011.
Colección:System engineering and operations research ; vol. 1.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn742584181
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110726s2011 si a ob 001 0 eng d
010 |z  2010537570 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCQ  |d CUY  |d YDXCP  |d UIU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d VLB  |d KNOVL  |d ZCU  |d NLGGC  |d KNOVL  |d OCLCQ  |d AZK  |d LOA  |d OCLCO  |d JBG  |d OCLCO  |d AGLDB  |d COCUF  |d TOA  |d OCLCO  |d MOR  |d VT2  |d PIFAG  |d OCLCQ  |d U3W  |d REB  |d OCLCF  |d STF  |d WRM  |d VTS  |d NRAMU  |d INT  |d CEF  |d AU@  |d OCLCO  |d OCLCQ  |d WYU  |d OCLCQ  |d M8D  |d LEAUB  |d UKCRE  |d EYM  |d OCLCO  |d OCLCQ 
019 |a 742516192  |a 961621654  |a 961848051  |a 962712481  |a 966238059  |a 988408179  |a 992043581  |a 999517445  |a 1026446719  |a 1037763000  |a 1038573460  |a 1045557954  |a 1055398289  |a 1058107414  |a 1066010406  |a 1081291231  |a 1086556049  |a 1153466239  |a 1228550096  |a 1240524942  |a 1249224298 
020 |a 9789814282659  |q (electronic bk.) 
020 |a 9814282650  |q (electronic bk.) 
020 |a 9781628702309  |q (electronic bk.) 
020 |a 1628702303  |q (electronic bk.) 
020 |z 9789814282642 
020 |z 9814282642 
029 1 |a AU@  |b 000051414208 
029 1 |a DEBBG  |b BV043077685 
029 1 |a DEBSZ  |b 372822460 
029 1 |a DEBSZ  |b 421584505 
029 1 |a GBVCP  |b 80361229X 
029 1 |a NZ1  |b 15908445 
035 |a (OCoLC)742584181  |z (OCoLC)742516192  |z (OCoLC)961621654  |z (OCoLC)961848051  |z (OCoLC)962712481  |z (OCoLC)966238059  |z (OCoLC)988408179  |z (OCoLC)992043581  |z (OCoLC)999517445  |z (OCoLC)1026446719  |z (OCoLC)1037763000  |z (OCoLC)1038573460  |z (OCoLC)1045557954  |z (OCoLC)1055398289  |z (OCoLC)1058107414  |z (OCoLC)1066010406  |z (OCoLC)1081291231  |z (OCoLC)1086556049  |z (OCoLC)1153466239  |z (OCoLC)1228550096  |z (OCoLC)1240524942  |z (OCoLC)1249224298 
050 4 |a TA168  |b .C473 2011eb 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 4 |a 620.001/171  |2 23 
049 |a UAMI 
100 1 |a Chen, Chun-hung. 
245 1 0 |a Stochastic simulation optimization :  |b an optimal computing budget allocation /  |c Chun-Hung Chen, Loo Hay Lee. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2011. 
300 |a 1 online resource (xviii, 227 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on system engineering and operations research ;  |v vol. 1 
504 |a Includes bibliographical references (pages 219-224) and index. 
588 0 |a Print version record. 
505 0 |a 1. Introduction to stochastic simulation optimization. 1.1. Introduction. 1.2. Problem definition. 1.3. Classification. 1.4. Summary -- 2. Computing budget allocation. 2.1. Simulation precision versus computing budget. 2.2. Computing budget allocation for comparison of multiple designs. 2.3. Intuitive explanations of optimal computing budget allocation. 2.4. Computing budget allocation for large simulation optimization. 2.5. Roadmap -- 3. Selecting the best from a set of alternative designs. 3.1. A Bayesian framework for simulation output modeling. 3.2. Probability of correct selection. 3.3. Maximizing the probability of correct selection. 3.4. Minimizing the total simulation cost. 3.5. Non-equal simulation costs. 3.6. Minimizing opportunity cost. 3.7. OCBA derivation based on classical model -- 4. Numerical implementation and experiments. 4.1. Numerical testing. 4.2. Parameter setting and implementation of the OCBA procedure -- 5. Selecting an optimal subset. 5.1. Introduction and problem statement. 5.2. Approximate asymptotically optimal allocation scheme. 5.3. Numerical experiments -- 6. Multi-objective optimal computing budget allocation. 6.1. Pareto optimality. 6.2. Multi-objective optimal computing budget allocation problem. 6.3. Asymptotic allocation rule. 6.4. A sequential allocation procedure. 6.5. Numerical results -- 7. Large-scale simulation and optimization. 7.1. A general framework of integration of OCBA with metaheuristics. 7.2. Problems with single objective. 7.3. Numerical experiments. 7.4. Multiple objectives. 7.5. Concluding remarks -- 8. Generalized OCBA framework and other related methods. 8.1. Optimal computing budget allocation for selecting the best by utilizing regression analysis (OCBA-OSD). 8.2. Optimal computing budget allocation for extended cross-entropy method (OCBA-CE). 8.3. Optimal computing budget allocation for variance reduction in rare-event simulation. 8.4. Optimal data collection budget allocation (ODCBA) for Monte Carlo DEA. 8.5. Other related works. 
520 |a With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Systems engineering  |x Simulation methods. 
650 0 |a Stochastic processes. 
650 0 |a Mathematical optimization. 
650 6 |a Ingénierie des systèmes  |x Méthodes de simulation. 
650 6 |a Processus stochastiques. 
650 6 |a Optimisation mathématique. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Stochastic processes.  |2 fast  |0 (OCoLC)fst01133519 
650 7 |a Stochastische Optimierung  |2 gnd 
650 7 |a Stochastische optimale Kontrolle  |2 gnd 
700 1 |a Lee, Loo Hay. 
776 0 8 |i Print version:  |a Chen, Chun-hung.  |t Stochastic simulation optimization.  |d Singapore ; Hackensack, NJ : World Scientific ; c2011  |z 9789814282642  |w (DLC) 2010537570  |w (OCoLC)456170891 
830 0 |a System engineering and operations research ;  |v vol. 1. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374808  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10479772 
938 |a EBSCOhost  |b EBSC  |n 374808 
938 |a YBP Library Services  |b YANK  |n 6965050 
994 |a 92  |b IZTAP