Cargando…

Geometric formulation of classical and quantum mechanics /

The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. The literature on this subject is extensive. The present book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Giachetta, G.
Otros Autores: Magiaradze, L. G., Sardanashvili, G. A. (Gennadiĭ Aleksandrovich)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ ; London : World Scientific, ©2011.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Dynamic equations. 1.1. Preliminary. Fibre bundles over R. 1.2. Autonomous dynamic equations. 1.3. Dynamic equations. 1.4. Dynamic connections. 1.5. Non-relativistic geodesic equations. 1.6. Reference frames. 1.7. Free motion equations. 1.8. Relative acceleration. 1.9. Newtonian systems. 1.10. Integrals of motion
  • 2. Lagrangian mechanics. 2.1. Lagrangian formalism on Q[symbol]R. 2.2. Cartan and Hamilton-De Donder equations. 2.3. Quadratic Lagrangians. 2.4. Lagrangian and Newtonian systems. 2.5. Lagrangian conservation laws. 2.6. Gauge symmetries
  • 3. Hamiltonian mechanics. 3.1. Geometry of Poisson manifolds. 3.2. Autonomous Hamiltonian systems. 3.3. Hamiltonian formalism on Q[symbol]R. 3.4. Homogeneous Hamiltonian formalism. 3.5. Lagrangian form of Hamiltonian formalism. 3.6. Associated Lagrangian and Hamiltonian systems. 3.7. Quadratic Lagrangian and Hamiltonian systems. 3.8. Hamiltonian conservation laws. 3.9. Time-reparametrized mechanics
  • 4. Algebraic quantization. 4.1. GNS construction. 4.2. Automorphisms of quantum systems. 4.3. Banach and Hilbert manifolds. 4.4. Hilbert and C*-algebra bundles. 4.5. Connections on Hilbert and C*-algebra bundles. 4.6. Instantwise quantization
  • 5. Geometric quantization. 5.1. Geometric quantization of symplectic manifolds. 5.2. Geometric quantization of a cotangent bundle. 5.3. Leafwise geometric quantization. 5.4. Quantization of non-relativistic mechanics. 5.5. Quantization with respect to different reference frames
  • 6. Constraint Hamiltonian systems. 6.1. Autonomous Hamiltonian systems with constraints. 6.2. Dirac constraints. 6.3. Time-dependent constraints. 6.4. Lagrangian constraints. 6.5. Geometric quantization of constraint systems
  • 7. Integrable Hamiltonian systems. 7.1. Partially integrable systems with non-compact invariant submanifolds. 7.2. KAM theorem for partially integrable systems. 7.3. Superintegrable systems with non-compact invariant submanifolds. 7.4. Globally superintegrable systems. 7.5. Superintegrable Hamiltonian systems. 7.6. Example. Global Kepler system. 7.7. Non-autonomous integrable systems. 7.8. Quantization of superintegrable systems
  • 8. Jacobi fields. 8.1. The vertical extension of Lagrangian mechanics. 8.2. The vertical extension of Hamiltonian mechanics. 8.3. Jacobi fields of completely integrable systems
  • 9. Mechanics with time-dependent parameters. 9.1. Lagrangian mechanics with parameters. 9.2. Hamiltonian mechanics with parameters. 9.3. Quantum mechanics with classical parameters. 9.4. Berry geometric factor. 9.5. Non-adiabatic holonomy operator
  • 10. Relativistic mechanics. 10.1. Jets of submanifolds. 10.2. Lagrangian relativistic mechanics. 10.3. Relativistic geodesic equations. 10.4. Hamiltonian relativistic mechanics. 10.5. Geometric quantization of relativistic mechanics.