Cargando…

Geometric formulation of classical and quantum mechanics /

The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. The literature on this subject is extensive. The present book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Giachetta, G.
Otros Autores: Magiaradze, L. G., Sardanashvili, G. A. (Gennadiĭ Aleksandrovich)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ ; London : World Scientific, ©2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn742413680
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110725s2011 si ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d STF  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCO  |d OCLCQ  |d NLGGC  |d EBLCP  |d WAU  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d AZK  |d LOA  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d VGM  |d ZCU  |d MERUC  |d OCLCQ  |d JBG  |d OCLCQ  |d U3W  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d CRU  |d OCLCQ  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 015655413  |2 Uk 
019 |a 741492796  |a 961543481  |a 962587056 
020 |a 9789814313728  |q (electronic bk.) 
020 |a 9814313726  |q (electronic bk.) 
020 |a 9789814313735  |q (electronic bk.) 
020 |a 9814313734  |q (electronic bk.) 
029 1 |a AU@  |b 000047752790 
029 1 |a AU@  |b 000048829177 
029 1 |a AU@  |b 000051582492 
029 1 |a DEBBG  |b BV043082072 
029 1 |a DEBBG  |b BV044156190 
029 1 |a DEBSZ  |b 372878911 
029 1 |a DEBSZ  |b 379321491 
029 1 |a DEBSZ  |b 421583819 
029 1 |a DEBSZ  |b 454995644 
029 1 |a HEBIS  |b 286064685 
029 1 |a NZ1  |b 14167681 
035 |a (OCoLC)742413680  |z (OCoLC)741492796  |z (OCoLC)961543481  |z (OCoLC)962587056 
050 4 |a QC174.17.G46  |b G53 2011eb 
072 7 |a SCI  |x 040000  |2 bisacsh 
082 0 4 |a 530.155353  |2 22 
049 |a UAMI 
100 1 |a Giachetta, G. 
245 1 0 |a Geometric formulation of classical and quantum mechanics /  |c Giovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily. 
260 |a Singapore ;  |a Hackensack, NJ ;  |a London :  |b World Scientific,  |c ©2011. 
300 |a 1 online resource (xi, 392 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references (pages 369-376) and index. 
505 0 |a 1. Dynamic equations. 1.1. Preliminary. Fibre bundles over R. 1.2. Autonomous dynamic equations. 1.3. Dynamic equations. 1.4. Dynamic connections. 1.5. Non-relativistic geodesic equations. 1.6. Reference frames. 1.7. Free motion equations. 1.8. Relative acceleration. 1.9. Newtonian systems. 1.10. Integrals of motion -- 2. Lagrangian mechanics. 2.1. Lagrangian formalism on Q[symbol]R. 2.2. Cartan and Hamilton-De Donder equations. 2.3. Quadratic Lagrangians. 2.4. Lagrangian and Newtonian systems. 2.5. Lagrangian conservation laws. 2.6. Gauge symmetries -- 3. Hamiltonian mechanics. 3.1. Geometry of Poisson manifolds. 3.2. Autonomous Hamiltonian systems. 3.3. Hamiltonian formalism on Q[symbol]R. 3.4. Homogeneous Hamiltonian formalism. 3.5. Lagrangian form of Hamiltonian formalism. 3.6. Associated Lagrangian and Hamiltonian systems. 3.7. Quadratic Lagrangian and Hamiltonian systems. 3.8. Hamiltonian conservation laws. 3.9. Time-reparametrized mechanics -- 4. Algebraic quantization. 4.1. GNS construction. 4.2. Automorphisms of quantum systems. 4.3. Banach and Hilbert manifolds. 4.4. Hilbert and C*-algebra bundles. 4.5. Connections on Hilbert and C*-algebra bundles. 4.6. Instantwise quantization -- 5. Geometric quantization. 5.1. Geometric quantization of symplectic manifolds. 5.2. Geometric quantization of a cotangent bundle. 5.3. Leafwise geometric quantization. 5.4. Quantization of non-relativistic mechanics. 5.5. Quantization with respect to different reference frames -- 6. Constraint Hamiltonian systems. 6.1. Autonomous Hamiltonian systems with constraints. 6.2. Dirac constraints. 6.3. Time-dependent constraints. 6.4. Lagrangian constraints. 6.5. Geometric quantization of constraint systems -- 7. Integrable Hamiltonian systems. 7.1. Partially integrable systems with non-compact invariant submanifolds. 7.2. KAM theorem for partially integrable systems. 7.3. Superintegrable systems with non-compact invariant submanifolds. 7.4. Globally superintegrable systems. 7.5. Superintegrable Hamiltonian systems. 7.6. Example. Global Kepler system. 7.7. Non-autonomous integrable systems. 7.8. Quantization of superintegrable systems -- 8. Jacobi fields. 8.1. The vertical extension of Lagrangian mechanics. 8.2. The vertical extension of Hamiltonian mechanics. 8.3. Jacobi fields of completely integrable systems -- 9. Mechanics with time-dependent parameters. 9.1. Lagrangian mechanics with parameters. 9.2. Hamiltonian mechanics with parameters. 9.3. Quantum mechanics with classical parameters. 9.4. Berry geometric factor. 9.5. Non-adiabatic holonomy operator -- 10. Relativistic mechanics. 10.1. Jets of submanifolds. 10.2. Lagrangian relativistic mechanics. 10.3. Relativistic geodesic equations. 10.4. Hamiltonian relativistic mechanics. 10.5. Geometric quantization of relativistic mechanics. 
520 |a The geometric formulation of autonomous Hamiltonian mechanics in the terms of symplectic and Poisson manifolds is generally accepted. The literature on this subject is extensive. The present book provides the geometric formulation of non-autonomous mechanics in a general setting of time-dependent coordinate and reference frame transformations. This formulation of mechanics as like as that of classical field theory lies in the framework of general theory of dynamic systems, and Lagrangian and Hamiltonian formalisms on fiber bundles. The reader will find a strict mathematical exposition of non-autonomous dynamic systems, Lagrangian and Hamiltonian non-relativistic mechanics, relativistic mechanics, quantum non-autonomous mechanics, together with a number of advanced models - superintegrable systems, non-autonomous constrained systems and theory of Jacobi fields. It also contains information on mechanical systems with time-dependent parameters, non-adiabatic Berry phase theory, instantwise quantization, and quantization relative to different reference frames. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mechanics  |x Mathematics. 
650 0 |a Quantum theory  |x Mathematics. 
650 0 |a Geometry, Differential. 
650 0 |a Mathematical physics. 
650 6 |a Mécanique  |x Mathématiques. 
650 6 |a Théorie quantique  |x Mathématiques. 
650 6 |a Géométrie différentielle. 
650 6 |a Physique mathématique. 
650 7 |a SCIENCE  |x Physics  |x Mathematical & Computational.  |2 bisacsh 
650 7 |a Geometry, Differential  |2 fast 
650 7 |a Mathematical physics  |2 fast 
650 7 |a Mechanics  |x Mathematics  |2 fast 
650 7 |a Quantum theory  |x Mathematics  |2 fast 
700 1 |a Magiaradze, L. G. 
700 1 |a Sardanashvili, G. A.  |q (Gennadiĭ Aleksandrovich) 
776 0 8 |i Print version:  |a Giachetta, G.  |t Geometric formulation of classical and quantum mechanics.  |d Singapore ; Hackensack, NJ ; London : World Scientific, ©2011  |z 9789814313728  |w (OCoLC)613430950 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374879  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL731099 
938 |a ebrary  |b EBRY  |n ebr10480121 
938 |a EBSCOhost  |b EBSC  |n 374879 
938 |a YBP Library Services  |b YANK  |n 6965125 
994 |a 92  |b IZTAP