Cargando…

2-D quadratic maps and 3-D ODE systems : a rigorous approach /

This book is based on research on the rigorous proof of chaos and bifurcations in 2-D quadratic maps, especially the invertible case such as the Hňon map, and in 3-D ODE's, especially piecewise linear systems such as the Chua's circuit. In addition, the book covers some recent works in th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zeraoulia, Elhadj
Otros Autores: Sprott, Julien C.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific, ©2010.
Colección:World Scientific series on nonlinear science. Monographs and treatises ; v. 73.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn740446113
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110711s2010 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d STF  |d E7B  |d OCLCQ  |d UIU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCA  |d OCLCQ  |d OCLCO  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d REC  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKCRE  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 015648265  |2 Uk 
019 |a 714877594  |a 741454360  |a 816846449  |a 961555302  |a 962625050  |a 966180509  |a 988410693  |a 991914238  |a 1037710618  |a 1038668883  |a 1045598974  |a 1055348133  |a 1063940155  |a 1081208716  |a 1086435377  |a 1153474509 
020 |a 9789814307758  |q (electronic bk.) 
020 |a 9814307750  |q (electronic bk.) 
020 |a 128314459X 
020 |a 9781283144599 
020 |z 9789814307741 
020 |z 9814307742 
029 1 |a AU@  |b 000048827745 
029 1 |a AU@  |b 000051427428 
029 1 |a AU@  |b 000058165528 
029 1 |a DEBBG  |b BV043170075 
029 1 |a DEBBG  |b BV044156283 
029 1 |a DEBSZ  |b 372822495 
029 1 |a DEBSZ  |b 379321963 
029 1 |a DEBSZ  |b 421583487 
029 1 |a DEBSZ  |b 454995857 
029 1 |a HEBIS  |b 27803425X 
029 1 |a NZ1  |b 13934353 
035 |a (OCoLC)740446113  |z (OCoLC)714877594  |z (OCoLC)741454360  |z (OCoLC)816846449  |z (OCoLC)961555302  |z (OCoLC)962625050  |z (OCoLC)966180509  |z (OCoLC)988410693  |z (OCoLC)991914238  |z (OCoLC)1037710618  |z (OCoLC)1038668883  |z (OCoLC)1045598974  |z (OCoLC)1055348133  |z (OCoLC)1063940155  |z (OCoLC)1081208716  |z (OCoLC)1086435377  |z (OCoLC)1153474509 
050 4 |a QA243  |b .Z47 2010eb 
072 7 |a MAT  |x 007010  |2 bisacsh 
072 7 |a PBWS  |2 bicssc 
082 0 4 |a 515.352  |2 22 
049 |a UAMI 
100 1 |a Zeraoulia, Elhadj. 
245 1 0 |a 2-D quadratic maps and 3-D ODE systems :  |b a rigorous approach /  |c Elhadj Zeraoulia, Julien Clinton Sprott. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific,  |c ©2010. 
300 |a 1 online resource (xiii, 342 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a World scientific series on nonlinear science. Series A. Monographs and treatises,  |x 1793-1010 ;  |v v. 73 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Tools for the rigorous proof of chaos and bifurcations. 1.1. Introduction. 1.2. A chain of rigorous proof of chaos. 1.3. Poincare map technique. 1.4. The method of fixed point index. 1.5. Smale's horseshoe map. 1.6. The Sil'nikov criterion for the existence of chaos. 1.7. The Marotto theorem. 1.8. The verified optimization technique. 1.9. Shadowing lemma. 1.10. Method based on the second-derivative test and bounds for Lyapunov exponents. 1.11. The Wiener and Hammerstein cascade models. 1.12. Methods based on time series analysis. 1.13. A new chaos detector. 1.14. Exercises -- 2. 2-D quadratic maps : The invertible case. 2.1. Introduction. 2.2. Equivalences in the general 2-D quadratic maps. 2.3. Invertibility of the map. 2.4. The Henon map. 2.5. Methods for locating chaotic regions in the Henon map. 2.6. Bifurcation analysis. 2.7. Exercises -- 3. Classification of chaotic orbits of the general 2-D quadratic map. 3.1. Analytical prediction of system orbits. 3.2. A zone of possible chaotic orbits. 3.3. Boundary between different attractors. 3.4. Finding chaotic and nonchaotic attractors. 3.5. Finding hyperchaotic attractors. 3.6. Some criteria for finding chaotic orbits. 3.7. 2-D quadratic maps with one nonlinearity. 3.8. 2-D quadratic maps with two nonlinearities. 3.9. 2-D quadratic maps with three nonlinearities. 3.10. 2-D quadratic maps with four nonlinearities. 3.11. 2-D quadratic maps with five nonlinearities. 3.12. 2-D quadratic maps with six nonlinearities. 3.13. Numerical analysis -- 4. Rigorous proof of chaos in the double-scroll system. 4.1. Introduction. 4.2. Piecewise linear geometry and its real Jordan form. 4.3. The dynamics of an orbit in the double-scroll. 4.4. Poincare map [symbol]. 4.5. Method 1 : Sil'nikov criteria. 4.6. Subfamilies of the double-scroll family. 4.7. The geometric model. 4.8. Method 2 : The computer-assisted proof. 4.9. Exercises -- 5. Rigorous analysis of bifurcation phenomena. 5.1. Introduction. 5.2. Asymptotic stability of equilibria. 5.3. Types of chaotic attractors in the double-scroll. 5.4. Method 1 : Rigorous mathematical analysis. 5.5. Method 2 : One-dimensional Poincare map. 5.6. Exercises. 
520 |a This book is based on research on the rigorous proof of chaos and bifurcations in 2-D quadratic maps, especially the invertible case such as the Hňon map, and in 3-D ODE's, especially piecewise linear systems such as the Chua's circuit. In addition, the book covers some recent works in the field of general 2-D quadratic maps, especially their classification into equivalence classes, and finding regions for chaos, hyperchaos, and non-chaos in the space of bifurcation parameters. Following the main introduction to the rigorous tools used to prove chaos and bifurcations in the two representative systems, is the study of the invertible case of the 2-D quadratic map, where previous works are oriented toward Hňon mapping. 2-D quadratic maps are then classified into 30 maps with well-known formulas. Two proofs on the regions for chaos, hyperchaos, and non-chaos in the space of the bifurcation parameters are presented using a technique based on the second-derivative test and bounds for Lyapunov exponents. Also included is the proof of chaos in the piecewise linear Chua's system using two methods, the first of which is based on the construction of Poincare map, and the second is based on a computer-assisted proof. Finally, a rigorous analysis is provided on the bifurcational phenomena in the piecewise linear Chua's system using both an analytical 2-D mapping and a 1-D approximated Poincare mapping in addition to other analytical methods. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Forms, Quadratic. 
650 0 |a Differential equations, Linear. 
650 0 |a Bifurcation theory. 
650 0 |a Differentiable dynamical systems. 
650 0 |a Proof theory. 
650 6 |a Formes quadratiques. 
650 6 |a Équations différentielles linéaires. 
650 6 |a Théorie de la bifurcation. 
650 6 |a Dynamique différentiable. 
650 6 |a Théorie de la preuve. 
650 7 |a MATHEMATICS  |x Differential Equations  |x Ordinary.  |2 bisacsh 
650 7 |a Bifurcation theory  |2 fast 
650 7 |a Differentiable dynamical systems  |2 fast 
650 7 |a Differential equations, Linear  |2 fast 
650 7 |a Forms, Quadratic  |2 fast 
650 7 |a Proof theory  |2 fast 
700 1 |a Sprott, Julien C. 
776 0 8 |i Print version:  |a Zeraoulia, Elhadj.  |t 2-D quadratic maps and 3-D ODE systems.  |d Singapore ; Hackensack, N.J. : World Scientific, ©2010  |z 9789814307741  |w (OCoLC)613429472 
830 0 |a World Scientific series on nonlinear science.  |n Series A,  |p Monographs and treatises ;  |v v. 73. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374914  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686593 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL731209 
938 |a ebrary  |b EBRY  |n ebr10479795 
938 |a EBSCOhost  |b EBSC  |n 374914 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 314459 
938 |a YBP Library Services  |b YANK  |n 6965106 
994 |a 92  |b IZTAP