Cargando…

Homogenization methods for multiscale mechanics /

In many physical problems several scales present either in space or in time, caused by either inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mei, Chiang C.
Otros Autores: Vernescu, Bogdan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, 2010.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn740444832
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110711s2010 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d EBLCP  |d E7B  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d MHW  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d OCLCQ  |d VTS  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d JBG  |d WYU  |d TKN  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1055381162  |a 1058127012  |a 1062999534  |a 1081278223  |a 1086432056 
020 |a 9789814282451  |q (electronic bk.) 
020 |a 9814282456  |q (electronic bk.) 
020 |z 9789814282444 
020 |z 9814282448 
029 1 |a AU@  |b 000051370832 
029 1 |a DEBBG  |b BV043146269 
029 1 |a DEBBG  |b BV044156289 
029 1 |a DEBSZ  |b 372819524 
029 1 |a DEBSZ  |b 379322013 
029 1 |a DEBSZ  |b 421583851 
029 1 |a DEBSZ  |b 454897820 
029 1 |a NZ1  |b 13934372 
035 |a (OCoLC)740444832  |z (OCoLC)1055381162  |z (OCoLC)1058127012  |z (OCoLC)1062999534  |z (OCoLC)1081278223  |z (OCoLC)1086432056 
050 4 |a QA377  |b .M45 2010eb 
072 7 |a MAT  |x 007020  |2 bisacsh 
082 0 4 |a 515.3/53  |2 22 
049 |a UAMI 
100 1 |a Mei, Chiang C. 
245 1 0 |a Homogenization methods for multiscale mechanics /  |c Chiang C. Mei, Bogdan Vernescu. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c 2010. 
300 |a 1 online resource (xvii, 330 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Introductory examples of homogenization method. Long waves in a layered elastic medium ; Short waves in a weakly stratified elastic medium ; Dispersion of passive solute in pipe flow ; Typical procedure of homogenization analysis -- Diffusion in a composite. Basic equations for two components in perfect contact ; Effective equation on the macroscale ; Effective boundary condition ; Symmetry and positiveness of effective conductivity ; Laminated composites ; Bounds for effective conductivity ; Hashin-Shtrikman bounds ; Other approximate results for dilute inclusions ; Thermal resistance at the interface ; Laminated composites with thermal resistance ; Bounds for the effective conductivity ; Chemical transport in aggregated soil ; Appendix 2A : heat transfer in a two-slab system -- Seepage in rigid porous media. Equations for seepage flow and Darcy's law ; Uniqueness of the cell boundary-value problem ; Symmetry and positiveness of hydraulic conductivity ; Numerical computation of the permeability tensor ; Seepage of a compressible fluid ; Two-dimensional flow through a three-dimensional matrix ; Porous media with three scales ; Brinkman's modification of Darcy's law ; Effects of weak fluid intertia ; Appendix 3A : spatial averaging theorem -- Dispersion in periodic media or flows. Passive solute in a two-scale seepage flow ; Macrodispersion in a three-scale porous medium ; Dispersion and transport in a wave boundary layer above the seabed ; Appendix 4A : derivation of convection-dispersion equation ; Appendix 4B : an alternate form of macrodispersion tensor -- Heterogeneous elastic materials. effective equations on the macroscale ; The effective elastic coefficients ; Application to fiber-reinforced composite ; Elastic panels with periodic microstructure ; Variational principles and bounds for the elastic moduli ; Hashin-Shtrikman bounds ; Partially cohesive composites ; Appendix 5A : properties of a tensor of fourth rank -- Deformable porous media. Basic equations for fluid and solid phases ; Scale estimates ; Multiple-scale expansions ; Averaged total momentum of the composite ; Averaged mass conservation of fluid phase ; Averaged fluid momentum ; Time-Harmonic motion ; Properties of the effective coefficients ; Computed elastic coefficients ; Boundary-layer approximation for macroscale problems ; Appendix 6A : properties of the compliance tensor ; Appendix 6B : variational principle for the elastostatic problem in a cell -- Wave propagation in inhomogeneous media. Long wave through a compact cylinder array ; Bragg scattering of short waves by a cylinder array ; Sound propagation in a bubbly liquid ; One-dimensional sound through a weakly random medium ; Weakly nonlinear dispersive waves in a random medium ; Harmonic generation in random media. 
588 0 |a Print version record. 
520 |a In many physical problems several scales present either in space or in time, caused by either inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by properly averaging over the micro-scale. The perturbation method of multiple scales can be used to derive averaged equations for a much larger scale from considerations of the small scales. In the mechanics of multiscale media, the analytical scheme of upscaling is known as the Theory of Homogenizati. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Homogenization (Differential equations) 
650 0 |a Mathematical physics. 
650 6 |a Homogénéisation (Équations différentielles) 
650 6 |a Physique mathématique. 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a Homogenization (Differential equations)  |2 fast 
650 7 |a Mathematical physics  |2 fast 
700 1 |a Vernescu, Bogdan. 
776 0 8 |i Print version:  |a Mei, Chiang C.  |t Homogenization methods for multiscale mechanics.  |d Singapore ; Hackensack, NJ : World Scientific, 2010  |z 9789814282444  |w (OCoLC)668364846 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374875  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686427 
938 |a EBL - Ebook Library  |b EBLB  |n EBL731217 
938 |a ebrary  |b EBRY  |n ebr10480003 
938 |a EBSCOhost  |b EBSC  |n 374875 
938 |a YBP Library Services  |b YANK  |n 3500028 
994 |a 92  |b IZTAP