Cargando…

The chaotic pendulum /

Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random forc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gitterman, M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ ; London : World Scientific, ©2010.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn740444827
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110711s2010 si a ob 001 0 eng d
010 |z  2011281759 
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d E7B  |d STF  |d OCLCQ  |d OCLCE  |d UIU  |d OCLCQ  |d DEBSZ  |d YDXCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d IDEBK  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d OCLCQ  |d VTS  |d OCLCQ  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d LEAUB  |d UKAHL  |d HS0  |d OCLCQ  |d UKCRE  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d QGK 
015 |a GBB082072  |2 bnb 
016 7 |a 015595715  |2 Uk 
019 |a 741454397  |a 763165335  |a 767689021  |a 770504846  |a 772528518  |a 816846494  |a 961507960  |a 962666099  |a 966267662  |a 974573194  |a 974613706  |a 988497678  |a 992075425  |a 1002347145  |a 1018084634  |a 1037768756  |a 1038047070  |a 1038651666  |a 1041624138  |a 1045445896  |a 1047930331  |a 1053537016  |a 1055355055  |a 1062903495  |a 1081215344  |a 1086449636  |a 1100572591  |a 1100909648  |a 1153478866  |a 1157037742  |a 1157709817  |a 1178693722  |a 1183865724  |a 1228550988  |a 1249101273  |a 1257365977  |a 1259228678 
020 |a 9789814322010  |q (electronic bk.) 
020 |a 9814322016  |q (electronic bk.) 
020 |a 1283144948 
020 |a 9781283144940 
020 |z 9789814322003 
020 |z 9814322008 
020 |a 9786613144942 
020 |a 6613144940 
029 1 |a AU@  |b 000048827776 
029 1 |a AU@  |b 000051354449 
029 1 |a AU@  |b 000058255684 
029 1 |a DEBBG  |b BV043146245 
029 1 |a DEBBG  |b BV044156330 
029 1 |a DEBSZ  |b 372822649 
029 1 |a DEBSZ  |b 37932220X 
029 1 |a DEBSZ  |b 421583398 
029 1 |a DEBSZ  |b 454897898 
029 1 |a HEBIS  |b 278034675 
029 1 |a NZ1  |b 13934400 
035 |a (OCoLC)740444827  |z (OCoLC)741454397  |z (OCoLC)763165335  |z (OCoLC)767689021  |z (OCoLC)770504846  |z (OCoLC)772528518  |z (OCoLC)816846494  |z (OCoLC)961507960  |z (OCoLC)962666099  |z (OCoLC)966267662  |z (OCoLC)974573194  |z (OCoLC)974613706  |z (OCoLC)988497678  |z (OCoLC)992075425  |z (OCoLC)1002347145  |z (OCoLC)1018084634  |z (OCoLC)1037768756  |z (OCoLC)1038047070  |z (OCoLC)1038651666  |z (OCoLC)1041624138  |z (OCoLC)1045445896  |z (OCoLC)1047930331  |z (OCoLC)1053537016  |z (OCoLC)1055355055  |z (OCoLC)1062903495  |z (OCoLC)1081215344  |z (OCoLC)1086449636  |z (OCoLC)1100572591  |z (OCoLC)1100909648  |z (OCoLC)1153478866  |z (OCoLC)1157037742  |z (OCoLC)1157709817  |z (OCoLC)1178693722  |z (OCoLC)1183865724  |z (OCoLC)1228550988  |z (OCoLC)1249101273  |z (OCoLC)1257365977  |z (OCoLC)1259228678 
042 |a dlr 
050 4 |a QA862.P4  |b G57 2010eb 
072 7 |a SCI  |x 012000  |2 bisacsh 
072 7 |a PBWS  |2 bicssc 
082 0 4 |a 003/.857  |2 23 
049 |a UAMI 
100 1 |a Gitterman, M. 
245 1 4 |a The chaotic pendulum /  |c Moshe Gitterman. 
260 |a Singapore ;  |a Hackensack, NJ ;  |a London :  |b World Scientific,  |c ©2010. 
300 |a 1 online resource (xiii, 142 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references (pages 133-138) and index. 
505 0 |a 1. Pendulum equations. 1.1. Mathematical pendulum. 1.2. Period of oscillations. 1.3. Underdamped pendulum. 1.4. Nonlinear vs linear equation. 1.5. Isomorphic models. 1.6. General concepts -- 2. Deterministic chaos. 2.1. Damped, periodically driven pendulum. 2.2. Analytic methods. 2.3. Parametric periodic force. 2.4. Parametrically driven pendulum. 2.5. Periodic and constant forces. 2.6. Parametric and constant forces. 2.7. External and parametric periodic forces -- 3. Pendulum subject to a random force. 3.1. Noise. 3.2. External random force. 3.3. Constant and random forces. 3.4. External periodic and random forces. 3.5. Pendulum with multiplicative noise. 3.6. Parametric periodic and random forces. 3.7. Damped pendulum subject to a constant torque, periodic force and noise. 3.8. Overdamped pendulum -- 4. Systems with two degrees of freedom. 4.1. Spring pendulum. 4.2. Double pendulum. 4.3. Spherical pendulum -- 5. Conclusions. 
520 |a Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics. 
588 0 |a Print version record. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Pendulum. 
650 0 |a Chaotic behavior in systems. 
650 6 |a Pendule. 
650 6 |a Chaos. 
650 7 |a SCIENCE  |x Chaotic Behavior in Systems.  |2 bisacsh 
650 7 |a Chaotic behavior in systems.  |2 fast  |0 (OCoLC)fst00852171 
650 7 |a Pendulum.  |2 fast  |0 (OCoLC)fst01056856 
776 0 8 |i Print version:  |a Gitterman, M.  |t Chaotic pendulum.  |d Singapore ; Hackensack, NJ ; London : World Scientific, ©2010  |z 9789814322003  |w (DLC) 2011281759  |w (OCoLC)613430898 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374923  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686639 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL731266 
938 |a ebrary  |b EBRY  |n ebr10480216 
938 |a EBSCOhost  |b EBSC  |n 374923 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 314494 
938 |a YBP Library Services  |b YANK  |n 6965148 
994 |a 92  |b IZTAP