Cargando…

Automorphic representations and L-functions for the general linear group. Volume I /

This modern, graduate-level textbook does not assume prior knowledge of representation theory. Includes numerous concrete examples and over 250 exercises.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Goldfeld, D.
Otros Autores: Hundley, Joseph
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2011.
Colección:Cambridge studies in advanced mathematics ; 129.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn739903542
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110708s2011 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCQ  |d GZM  |d REDDC  |d OCLCQ  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d UMI  |d COO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d UAB  |d UUM  |d OCLCQ  |d CEF  |d INT  |d OCLCQ  |d K6U  |d YDXIT  |d AU@  |d VLY  |d LUN  |d DST  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 742513746  |a 858807068  |a 1097120316  |a 1162197214  |a 1170529666  |a 1170658061  |a 1241806544  |a 1274003896  |a 1292397640  |a 1300478286  |a 1303350579  |a 1303467718 
020 |a 9781139081863  |q electronic book 
020 |a 1139081861  |q electronic book 
020 |a 9781139077309  |q electronic book 
020 |a 1139077309  |q electronic book 
020 |a 9781139079587  |q electronic book 
020 |a 1139079581  |q electronic book 
020 |a 9780511973628  |q electronic book 
020 |a 0511973624  |q electronic book 
020 |z 9780521474238  |q volume 1 
020 |z 052147423X  |q volume 1 
020 |z 9781107471276 (paperback) 
020 |a 1107224055 
020 |a 9781107224056 
020 |a 1139635913 
020 |a 9781139635912 
020 |a 1283118807 
020 |a 9781283118804 
020 |a 9786613118806 
020 |a 661311880X 
020 |a 1139075047 
020 |a 9781139075046 
020 |a 1139069276 
020 |a 9781139069274 
020 |a 1107471273 
020 |a 9781107471276 
029 1 |a AU@  |b 000052007911 
029 1 |a DEBBG  |b BV041432644 
029 1 |a DEBSZ  |b 372822150 
029 1 |a DEBSZ  |b 398285675 
029 1 |a GBVCP  |b 785372504 
035 |a (OCoLC)739903542  |z (OCoLC)742513746  |z (OCoLC)858807068  |z (OCoLC)1097120316  |z (OCoLC)1162197214  |z (OCoLC)1170529666  |z (OCoLC)1170658061  |z (OCoLC)1241806544  |z (OCoLC)1274003896  |z (OCoLC)1292397640  |z (OCoLC)1300478286  |z (OCoLC)1303350579  |z (OCoLC)1303467718 
037 |a CL0500000300  |b Safari Books Online 
050 4 |a QA246  |b .G648 2011 
072 7 |a MAT  |x 040000  |2 bisacsh 
082 0 4 |a 515.9  |2 22 
049 |a UAMI 
100 1 |a Goldfeld, D. 
245 1 0 |a Automorphic representations and L-functions for the general linear group.  |n Volume I /  |c Dorian Goldfeld, Joseph Hundley ; with exercises by Xander Faber. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (xix, 550 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge studies in advanced mathematics ;  |v 129 
504 |a Includes bibliographical references (pages 531-536) and indexes. 
505 0 |a Cover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents for Volume I -- Contents for Volume II -- Introduction -- Preface to the Exercises -- 1 Adeles over Q -- 1.1 Absolute values -- 1.2 The field Qp of p-adic numbers -- 1.3 Adeles and ideles over Q -- 1.4 Action of Q on the adeles and ideles -- 1.5 p-adic integration -- 1.6 p-adic Fourier transform -- 1.7 Adelic Fourier transform -- 1.8 Fourier expansion of periodic adelic functions -- 1.9 Adelic Poisson summation formula -- Exercises for Chapter 1 -- 2 Automorphic representations and L-functions for GL(1, AQ) -- 2.1 Automorphic forms for GL (1, AQ) -- 2.2 The L-function of an automorphic form -- 2.3 The local L-functions and their functional equations -- 2.4 Classical L-functions and root numbers -- 2.5 Automorphic representations for GL(1, AQ) -- 2.6 Hecke operators for GL(1, AQ) -- 2.7 The Rankin-Selberg method -- 2.8 The p-adic Mellin transform -- Exercises for Chapter 2 -- 3 The classical theory of automorphic forms for GL(2) -- 3.1 Automorphic forms in general -- 3.2 Congruence subgroups of the modular group -- 3.3 Automorphic functions of integral weight k -- 3.4 Fourier expansion at ... of holomorphic modular forms -- 3.5 Maass forms -- 3.6 Whittaker functions -- 3.7 Fourier-Whittaker expansions of Maass forms -- 3.8 Eisenstein series -- 3.9 Maass raising and lowering operators -- 3.10 The bottom of the spectrum -- 3.11 Hecke operators, oldforms, and newforms -- 3.12 Finite dimensionality of the eigenspaces -- Exercises for Chapter 3 -- 4 Automorphic forms for GL(2, AQ) -- 4.1 Iwasawa and Cartan decompositions for GL(2, R) -- 4.2 Iwasawa and Cartan decompositions for GL(2, Qp) -- 4.3 The adele group GL(2, AQ) -- 4.4 The action of GL (2, Q) on GL(2, AQ) -- 4.5 The universal enveloping algebra of gl(2,C). 
505 8 |a 4.6 The center of the universal enveloping algebra of gl(2, C) -- 4.7 Automorphic forms for GL(2, AQ) -- 4.8 Adelic lifts of weight zero, level one, Maass forms -- 4.9 The Fourier expansion of adelic automorphic forms -- 4.10 Global Whittaker functions for GL(2, AQ) -- 4.11 Strong approximation for congruence subgroups -- 4.12 Adelic lifts with arbitrary weight, level, and character -- 4.13 Global Whittaker functions for adelic lifts with arbitrary weight, level, and character -- Exercises for Chapter 4 -- 5 Automorphic representations for GL(2, AQ) -- 5.1 Adelic automorphic representations for GL(2, AQ) -- 5.2 Explicit realization of actions defining a (g, K ...)-module -- 5.3 Explicit realization of the action of GL(2, Afinite) -- 5.4 Examples of cuspidal automorphic representations -- 5.5 Admissible (g, K ...) × GL(2, Afinite)-modules -- Exercises for Chapter 5 -- 6 Theory of admissible representations of GL(2, Qp) -- 6.0 Short roadmap to chapter 6 -- 6.1 Admissible representations of GL(2, Qp) -- 6.2 Ramified versus unramified -- 6.3 Local representation coming from a level 1 Maass form -- 6.4 Jacquet's local Whittaker function -- 6.5 Principal series representations -- 6.6 Jacquet's map: Principal series larrow Whittaker functions -- 6.7 The Kirillov model -- 6.8 The Kirillov model of the principal series representation -- 6.9 Haar measure on GL(2, Qp) -- 6.10 The special representations -- 6.11 Jacquet modules -- 6.12 Induced representations and parabolic induction -- 6.13 The supercuspidal representations of GL(2, Qp) -- 6.14 The uniqueness of the Kirillov model -- 6.15 The Kirillov model of a supercuspidal representation -- 6.16 The classification of the irreducible and admissible representations of GL(2, Qp) -- Exercises for Chapter 6 -- 7 Theory of admissible (g, K8) modules for GL(2, R) -- 7.1 Admissible (g, K8)-modules. 
505 8 |a 7.2 Ramified versus unramified -- 7.3 Jacquet's local Whittaker function -- 7.4 Principal series representations -- 7.5 Classification of irreducible admissible (g, K8)-modules -- Exercises for Chapter 7 -- 8 The contragredient representation for GL(2) -- 8.1 The contragredient representation for GL(2, Qp) -- 8.2 The contragredient representation of a principal series representation of GL(2, Qp) -- 8.3 Contragredient of a special representation of GL(2, Qp) -- 8.4 Contragredient of a supercuspidal representation -- 8.5 The contragredient representation for GL(2, R) -- 8.6 The contragredient representation of a principal series representation of GL(2, R) -- 8.7 Global contragredients for GL(2, AQ) -- 8.8 Integration on GL(2, AQ) -- 8.9 The contragredient representation of a cuspidal automorphic representation of GL(2, AQ) -- 8.10 Growth of matrix coefficients -- 8.11 Asymptotics of matrix coefficients of (g, K8)-modules -- 8.12 Matrix coefficients of GL(2, Qp) via the Jacquet module -- Exercises for Chapter 8 -- 9 Unitary representations of GL (2) -- 9.1 Unitary representations of GL(2, Qp) -- 9.2 Unitary principal series representations of GL(2, Qp) -- 9.3 Unitary and irreducible special or supercuspidal representations of GL(2, Qp) -- 9.4 Unitary (g, K8)-modules -- 9.5 Unitary (g, K8) × GL(2,Afinite)-modules -- Exercises for Chapter 9 -- 10 Tensor products of local representations -- 10.1 Euler products -- 10.2 Tensor product of (g, K8)-modules and representations -- 10.3 Infinite tensor products of local representations -- 10.4 The factorization of unramified irreducible admissible cuspidal automorphic representations -- 10.5 Decomposition of representations of locally compact groups into finite tensor products -- 10.6 The spherical Hecke algebra for GL(2, Qp) -- 10.7 Initial decomposition of admissible (g, K8) × GL(2,Afinite)-modules. 
505 8 |a 10.8 The tensor product theorem -- 10.9 The Ramanujan and Selberg conjectures for GL(2, AQ) -- Exercises for Chapter 10 -- 11 The Godement-Jacquet L-function for GL(2, AQ) -- 11.1 Historical remarks -- 11.2 The Poisson summation formula for GL(2, AQ) -- 11.3 Haar measure -- 11.4 The global zeta integral for GL(2, AQ) -- 11.5 Factorization of the global zeta integral -- 11.6 The local functional equation -- 11.7 The local L-function for GL(2, Qp) (unramified case) -- 11.8 The local L-function for irreducible supercuspidal representations of GL(2, Qp) -- 11.9 The local L-function for irreducible principal series representations of GL(2, Qp) -- 11.10 Local L-function for unitary special representations of GL(2, Qp) -- 11.11 Proof of the local functional equation for principal series representations of GL(2, Qp) -- 11.12 The local functional equation for the unitary special representations of GL(2, Qp) -- 11.13 Proof of the local functional equation for the supercuspidal representations of GL(2, Qp) -- 11.14 The local L-function for irreducible principal series representations of GL(2, R) -- 11.15 Proof of the local functional equation for principal series representations of GL(2, R) -- 11.16 The local L-function for irreducible discrete series representations of GL(2, R) -- Exercises for Chapter 11 -- Solutions to Selected Exercises -- References -- Symbols Index -- Index. 
520 |a This modern, graduate-level textbook does not assume prior knowledge of representation theory. Includes numerous concrete examples and over 250 exercises. 
588 |a Description based on online resource; title from digital title page (viewed on January 24, 2020). 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Automorphic forms. 
650 0 |a L-functions. 
650 0 |a Representations of groups. 
650 6 |a Formes automorphes. 
650 6 |a Fonctions L. 
650 6 |a Représentations de groupes. 
650 7 |a MATHEMATICS  |x Complex Analysis.  |2 bisacsh 
650 7 |a Automorphic forms  |2 fast 
650 7 |a L-functions  |2 fast 
650 7 |a Representations of groups  |2 fast 
700 1 |a Hundley, Joseph. 
776 0 8 |i Print version:  |a Goldfeld, D.  |t Automorphic representations and L-functions for the general linear group. Vol. 1.  |d Cambridge : Cambridge University Press, 2011  |z 9780521474238  |w (OCoLC)665137577 
830 0 |a Cambridge studies in advanced mathematics ;  |v 129. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=366233  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10476545 
938 |a EBSCOhost  |b EBSC  |n 366233 
938 |a YBP Library Services  |b YANK  |n 6892861 
938 |a YBP Library Services  |b YANK  |n 6943928 
938 |a YBP Library Services  |b YANK  |n 6972925 
994 |a 92  |b IZTAP