|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn739903542 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
110708s2011 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d OCLCQ
|d GZM
|d REDDC
|d OCLCQ
|d YDXCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d UMI
|d COO
|d OCLCQ
|d OCLCF
|d OCLCQ
|d UAB
|d UUM
|d OCLCQ
|d CEF
|d INT
|d OCLCQ
|d K6U
|d YDXIT
|d AU@
|d VLY
|d LUN
|d DST
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 742513746
|a 858807068
|a 1097120316
|a 1162197214
|a 1170529666
|a 1170658061
|a 1241806544
|a 1274003896
|a 1292397640
|a 1300478286
|a 1303350579
|a 1303467718
|
020 |
|
|
|a 9781139081863
|q electronic book
|
020 |
|
|
|a 1139081861
|q electronic book
|
020 |
|
|
|a 9781139077309
|q electronic book
|
020 |
|
|
|a 1139077309
|q electronic book
|
020 |
|
|
|a 9781139079587
|q electronic book
|
020 |
|
|
|a 1139079581
|q electronic book
|
020 |
|
|
|a 9780511973628
|q electronic book
|
020 |
|
|
|a 0511973624
|q electronic book
|
020 |
|
|
|z 9780521474238
|q volume 1
|
020 |
|
|
|z 052147423X
|q volume 1
|
020 |
|
|
|z 9781107471276 (paperback)
|
020 |
|
|
|a 1107224055
|
020 |
|
|
|a 9781107224056
|
020 |
|
|
|a 1139635913
|
020 |
|
|
|a 9781139635912
|
020 |
|
|
|a 1283118807
|
020 |
|
|
|a 9781283118804
|
020 |
|
|
|a 9786613118806
|
020 |
|
|
|a 661311880X
|
020 |
|
|
|a 1139075047
|
020 |
|
|
|a 9781139075046
|
020 |
|
|
|a 1139069276
|
020 |
|
|
|a 9781139069274
|
020 |
|
|
|a 1107471273
|
020 |
|
|
|a 9781107471276
|
029 |
1 |
|
|a AU@
|b 000052007911
|
029 |
1 |
|
|a DEBBG
|b BV041432644
|
029 |
1 |
|
|a DEBSZ
|b 372822150
|
029 |
1 |
|
|a DEBSZ
|b 398285675
|
029 |
1 |
|
|a GBVCP
|b 785372504
|
035 |
|
|
|a (OCoLC)739903542
|z (OCoLC)742513746
|z (OCoLC)858807068
|z (OCoLC)1097120316
|z (OCoLC)1162197214
|z (OCoLC)1170529666
|z (OCoLC)1170658061
|z (OCoLC)1241806544
|z (OCoLC)1274003896
|z (OCoLC)1292397640
|z (OCoLC)1300478286
|z (OCoLC)1303350579
|z (OCoLC)1303467718
|
037 |
|
|
|a CL0500000300
|b Safari Books Online
|
050 |
|
4 |
|a QA246
|b .G648 2011
|
072 |
|
7 |
|a MAT
|x 040000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.9
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Goldfeld, D.
|
245 |
1 |
0 |
|a Automorphic representations and L-functions for the general linear group.
|n Volume I /
|c Dorian Goldfeld, Joseph Hundley ; with exercises by Xander Faber.
|
260 |
|
|
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (xix, 550 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge studies in advanced mathematics ;
|v 129
|
504 |
|
|
|a Includes bibliographical references (pages 531-536) and indexes.
|
505 |
0 |
|
|a Cover -- Half-title -- Series-title -- Title -- Copyright -- Dedication -- Contents for Volume I -- Contents for Volume II -- Introduction -- Preface to the Exercises -- 1 Adeles over Q -- 1.1 Absolute values -- 1.2 The field Qp of p-adic numbers -- 1.3 Adeles and ideles over Q -- 1.4 Action of Q on the adeles and ideles -- 1.5 p-adic integration -- 1.6 p-adic Fourier transform -- 1.7 Adelic Fourier transform -- 1.8 Fourier expansion of periodic adelic functions -- 1.9 Adelic Poisson summation formula -- Exercises for Chapter 1 -- 2 Automorphic representations and L-functions for GL(1, AQ) -- 2.1 Automorphic forms for GL (1, AQ) -- 2.2 The L-function of an automorphic form -- 2.3 The local L-functions and their functional equations -- 2.4 Classical L-functions and root numbers -- 2.5 Automorphic representations for GL(1, AQ) -- 2.6 Hecke operators for GL(1, AQ) -- 2.7 The Rankin-Selberg method -- 2.8 The p-adic Mellin transform -- Exercises for Chapter 2 -- 3 The classical theory of automorphic forms for GL(2) -- 3.1 Automorphic forms in general -- 3.2 Congruence subgroups of the modular group -- 3.3 Automorphic functions of integral weight k -- 3.4 Fourier expansion at ... of holomorphic modular forms -- 3.5 Maass forms -- 3.6 Whittaker functions -- 3.7 Fourier-Whittaker expansions of Maass forms -- 3.8 Eisenstein series -- 3.9 Maass raising and lowering operators -- 3.10 The bottom of the spectrum -- 3.11 Hecke operators, oldforms, and newforms -- 3.12 Finite dimensionality of the eigenspaces -- Exercises for Chapter 3 -- 4 Automorphic forms for GL(2, AQ) -- 4.1 Iwasawa and Cartan decompositions for GL(2, R) -- 4.2 Iwasawa and Cartan decompositions for GL(2, Qp) -- 4.3 The adele group GL(2, AQ) -- 4.4 The action of GL (2, Q) on GL(2, AQ) -- 4.5 The universal enveloping algebra of gl(2,C).
|
505 |
8 |
|
|a 4.6 The center of the universal enveloping algebra of gl(2, C) -- 4.7 Automorphic forms for GL(2, AQ) -- 4.8 Adelic lifts of weight zero, level one, Maass forms -- 4.9 The Fourier expansion of adelic automorphic forms -- 4.10 Global Whittaker functions for GL(2, AQ) -- 4.11 Strong approximation for congruence subgroups -- 4.12 Adelic lifts with arbitrary weight, level, and character -- 4.13 Global Whittaker functions for adelic lifts with arbitrary weight, level, and character -- Exercises for Chapter 4 -- 5 Automorphic representations for GL(2, AQ) -- 5.1 Adelic automorphic representations for GL(2, AQ) -- 5.2 Explicit realization of actions defining a (g, K ...)-module -- 5.3 Explicit realization of the action of GL(2, Afinite) -- 5.4 Examples of cuspidal automorphic representations -- 5.5 Admissible (g, K ...) × GL(2, Afinite)-modules -- Exercises for Chapter 5 -- 6 Theory of admissible representations of GL(2, Qp) -- 6.0 Short roadmap to chapter 6 -- 6.1 Admissible representations of GL(2, Qp) -- 6.2 Ramified versus unramified -- 6.3 Local representation coming from a level 1 Maass form -- 6.4 Jacquet's local Whittaker function -- 6.5 Principal series representations -- 6.6 Jacquet's map: Principal series larrow Whittaker functions -- 6.7 The Kirillov model -- 6.8 The Kirillov model of the principal series representation -- 6.9 Haar measure on GL(2, Qp) -- 6.10 The special representations -- 6.11 Jacquet modules -- 6.12 Induced representations and parabolic induction -- 6.13 The supercuspidal representations of GL(2, Qp) -- 6.14 The uniqueness of the Kirillov model -- 6.15 The Kirillov model of a supercuspidal representation -- 6.16 The classification of the irreducible and admissible representations of GL(2, Qp) -- Exercises for Chapter 6 -- 7 Theory of admissible (g, K8) modules for GL(2, R) -- 7.1 Admissible (g, K8)-modules.
|
505 |
8 |
|
|a 7.2 Ramified versus unramified -- 7.3 Jacquet's local Whittaker function -- 7.4 Principal series representations -- 7.5 Classification of irreducible admissible (g, K8)-modules -- Exercises for Chapter 7 -- 8 The contragredient representation for GL(2) -- 8.1 The contragredient representation for GL(2, Qp) -- 8.2 The contragredient representation of a principal series representation of GL(2, Qp) -- 8.3 Contragredient of a special representation of GL(2, Qp) -- 8.4 Contragredient of a supercuspidal representation -- 8.5 The contragredient representation for GL(2, R) -- 8.6 The contragredient representation of a principal series representation of GL(2, R) -- 8.7 Global contragredients for GL(2, AQ) -- 8.8 Integration on GL(2, AQ) -- 8.9 The contragredient representation of a cuspidal automorphic representation of GL(2, AQ) -- 8.10 Growth of matrix coefficients -- 8.11 Asymptotics of matrix coefficients of (g, K8)-modules -- 8.12 Matrix coefficients of GL(2, Qp) via the Jacquet module -- Exercises for Chapter 8 -- 9 Unitary representations of GL (2) -- 9.1 Unitary representations of GL(2, Qp) -- 9.2 Unitary principal series representations of GL(2, Qp) -- 9.3 Unitary and irreducible special or supercuspidal representations of GL(2, Qp) -- 9.4 Unitary (g, K8)-modules -- 9.5 Unitary (g, K8) × GL(2,Afinite)-modules -- Exercises for Chapter 9 -- 10 Tensor products of local representations -- 10.1 Euler products -- 10.2 Tensor product of (g, K8)-modules and representations -- 10.3 Infinite tensor products of local representations -- 10.4 The factorization of unramified irreducible admissible cuspidal automorphic representations -- 10.5 Decomposition of representations of locally compact groups into finite tensor products -- 10.6 The spherical Hecke algebra for GL(2, Qp) -- 10.7 Initial decomposition of admissible (g, K8) × GL(2,Afinite)-modules.
|
505 |
8 |
|
|a 10.8 The tensor product theorem -- 10.9 The Ramanujan and Selberg conjectures for GL(2, AQ) -- Exercises for Chapter 10 -- 11 The Godement-Jacquet L-function for GL(2, AQ) -- 11.1 Historical remarks -- 11.2 The Poisson summation formula for GL(2, AQ) -- 11.3 Haar measure -- 11.4 The global zeta integral for GL(2, AQ) -- 11.5 Factorization of the global zeta integral -- 11.6 The local functional equation -- 11.7 The local L-function for GL(2, Qp) (unramified case) -- 11.8 The local L-function for irreducible supercuspidal representations of GL(2, Qp) -- 11.9 The local L-function for irreducible principal series representations of GL(2, Qp) -- 11.10 Local L-function for unitary special representations of GL(2, Qp) -- 11.11 Proof of the local functional equation for principal series representations of GL(2, Qp) -- 11.12 The local functional equation for the unitary special representations of GL(2, Qp) -- 11.13 Proof of the local functional equation for the supercuspidal representations of GL(2, Qp) -- 11.14 The local L-function for irreducible principal series representations of GL(2, R) -- 11.15 Proof of the local functional equation for principal series representations of GL(2, R) -- 11.16 The local L-function for irreducible discrete series representations of GL(2, R) -- Exercises for Chapter 11 -- Solutions to Selected Exercises -- References -- Symbols Index -- Index.
|
520 |
|
|
|a This modern, graduate-level textbook does not assume prior knowledge of representation theory. Includes numerous concrete examples and over 250 exercises.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on January 24, 2020).
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Automorphic forms.
|
650 |
|
0 |
|a L-functions.
|
650 |
|
0 |
|a Representations of groups.
|
650 |
|
6 |
|a Formes automorphes.
|
650 |
|
6 |
|a Fonctions L.
|
650 |
|
6 |
|a Représentations de groupes.
|
650 |
|
7 |
|a MATHEMATICS
|x Complex Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Automorphic forms
|2 fast
|
650 |
|
7 |
|a L-functions
|2 fast
|
650 |
|
7 |
|a Representations of groups
|2 fast
|
700 |
1 |
|
|a Hundley, Joseph.
|
776 |
0 |
8 |
|i Print version:
|a Goldfeld, D.
|t Automorphic representations and L-functions for the general linear group. Vol. 1.
|d Cambridge : Cambridge University Press, 2011
|z 9780521474238
|w (OCoLC)665137577
|
830 |
|
0 |
|a Cambridge studies in advanced mathematics ;
|v 129.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=366233
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10476545
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 366233
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 6892861
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 6943928
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 6972925
|
994 |
|
|
|a 92
|b IZTAP
|