Cargando…

Neural nets and chaotic carriers /

Neural Nets and Chaotic Carriers develops rational principles for the design of associative memories, with a view to applying these principles to models with irregularly oscillatory operation so evident in biological neural systems, and necessitated by the meaninglessness of absolute signal levels....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Whittle, Peter, 1927-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hackensack, NJ : Imperial College Press ; Distributed by World Scientific Pub., ©2010.
Edición:2nd ed.
Colección:Advances in computer science and engineering. Texts ; v. 5.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn738439505
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110705s2010 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d EBLCP  |d E7B  |d CDX  |d STF  |d OCLCQ  |d UIU  |d OCLCA  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCF  |d YDXCP  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d UKCRE  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ 
015 |a GBB079618  |2 bnb 
016 7 |a 015590378  |2 Uk 
019 |a 754711935  |a 961690545  |a 962724739  |a 966210898  |a 988479329  |a 991927617  |a 1037735130  |a 1038619253  |a 1045447254  |a 1055324124  |a 1058513826  |a 1058780394  |a 1065845545  |a 1081291302  |a 1086423073  |a 1153519555  |a 1228558347 
020 |a 9781848165915  |q (electronic bk.) 
020 |a 1848165919  |q (electronic bk.) 
020 |z 9781848165908 
020 |z 1848165900 
029 1 |a AU@  |b 000051397838 
029 1 |a CHNEW  |b 000607023 
029 1 |a DEBBG  |b BV043128811 
029 1 |a DEBBG  |b BV044156407 
029 1 |a DEBSZ  |b 372699804 
029 1 |a DEBSZ  |b 397097530 
029 1 |a DEBSZ  |b 421584602 
029 1 |a DEBSZ  |b 456484108 
029 1 |a NZ1  |b 15586045 
035 |a (OCoLC)738439505  |z (OCoLC)754711935  |z (OCoLC)961690545  |z (OCoLC)962724739  |z (OCoLC)966210898  |z (OCoLC)988479329  |z (OCoLC)991927617  |z (OCoLC)1037735130  |z (OCoLC)1038619253  |z (OCoLC)1045447254  |z (OCoLC)1055324124  |z (OCoLC)1058513826  |z (OCoLC)1058780394  |z (OCoLC)1065845545  |z (OCoLC)1081291302  |z (OCoLC)1086423073  |z (OCoLC)1153519555  |z (OCoLC)1228558347 
050 4 |a QA76.87  |b .W46 2010eb 
072 7 |a COM  |x 044000  |2 bisacsh 
082 0 4 |a 006.32  |2 22 
049 |a UAMI 
100 1 |a Whittle, Peter,  |d 1927- 
245 1 0 |a Neural nets and chaotic carriers /  |c Peter Whittle. 
250 |a 2nd ed. 
260 |a London :  |b Imperial College Press ;  |a Hackensack, NJ :  |b Distributed by World Scientific Pub.,  |c ©2010. 
300 |a 1 online resource (xii, 230 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in computer science and engineering: Texts ;  |v v. 5 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Introduction and aspirations -- 2. Optimal statistical procedures. 2.1. The optimisation of actions. 2.2. Effective estimation of state. 2.3. The quadratic/Gaussian case : estimation and certainty equivalence. 2.4 The linear model, in Bayesian and classic versions -- 3. Linear links and nonlinear knots : The basic neural net. 3.1. Neural calculations : The linear gate and the McCulloch-Pitts net. 3.2. Sigmoid and threshold functions. 3.3. Iteration. 3.4. Neural systems and feedback in continuous time. 3.5. Equilibrium excitation patterns. 3.6. Some special-purpose nets -- 4. Bifurcations and chaos. 4.1. The Hopf bifurcation. 4.2. Chaos -- 5. What is a memory? The Hamming and Hopfield nets. 5.1. Associative memories. 5.2. The Hamming net. 5.3. Autoassociation, feedback and storage. 5.4. The Hopfield net. 5.5. Alternative formulations of the Hopfield net -- 6. Compound and 'spurious' traces. 6.1. Performance and trace structure. 6.2. The recognition of simple traces. 6.3. Inference for compound traces. 6.4. Network realisation of the quantised regression. 6.5. Reliability constraints for the quantised regression. 6.6. Stability constraints for the quantised regression. 6.7. The Hopfield net -- 7. Preserving plasticity : A Bayesian approach. 7.1. A Bayesian view. 7.2. A robust estimation method. 7.3. Dynamic and neural versions of the algorithm -- 8. The key task : the fixing of fading data. Conclusions I. 8.1. Fading data, and the need for quantisation. 8.2. The probability-maximising algorithm (PMA). 8.3. Properties of the vector activation function F(z). 8.4. Some special cases. 8.5. The network realisation of the full PMA. 8.6. Neural implementation of the PMA. 8.7. The PMA and the exponential family. 8.8. Conclusions I -- 9. Performance of the probability-maximising algorithm. 9.1. A general formulation. 9.2. Considerations for reliable inference. 9.3. Performance of the PMA for simple stimuli. 9.4. Compound stimuli : The general pattern. 9. 5. Compound stimuli in the Gaussian case -- 10. Other memories -- other considerations. 10.1. The supervised learning of a linear relation. 10.2. Unsupervised learning : The criterion of economy. 
520 |a Neural Nets and Chaotic Carriers develops rational principles for the design of associative memories, with a view to applying these principles to models with irregularly oscillatory operation so evident in biological neural systems, and necessitated by the meaninglessness of absolute signal levels. Design is based on the criterion that an associative memory must be able to cope with "fading data", i.e., to form an inference from the data even as its memory of that data degrades. The resultant net shows striking biological parallels. When these principles are combined with the Freeman specification of a neural oscillator, some remarkable effects emerge. For example, the commonly-observed phenomenon of neuronal bursting appears, with gamma-range oscillation modulated by a low-frequency square-wave oscillation (the "escapement oscillation"). Bridging studies and new results of artificial and biological neural networks, the book has a strong research character. It is, on the other hand, accessible to non-specialists for its concise exposition on the basics 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Neural networks (Computer science) 
650 0 |a Chaotic behavior in systems. 
650 2 |a Neural Networks, Computer 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Chaos. 
650 7 |a COMPUTERS  |x Neural Networks.  |2 bisacsh 
650 7 |a Chaotic behavior in systems.  |2 fast  |0 (OCoLC)fst00852171 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
776 0 8 |i Print version:  |a Whittle, Peter, 1927-  |t Neural nets and chaotic carriers.  |b 2nd ed.  |d London : Imperial College Press ; Hackensack, NJ : Distributed by World Scientific Pub., ©2010  |z 9781848165908  |w (OCoLC)645707637 
830 0 |a Advances in computer science and engineering.  |p Texts ;  |v v. 5. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=374799  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24682659 
938 |a Coutts Information Services  |b COUT  |n 18078458 
938 |a EBL - Ebook Library  |b EBLB  |n EBL731354 
938 |a ebrary  |b EBRY  |n ebr10479953 
938 |a EBSCOhost  |b EBSC  |n 374799 
938 |a YBP Library Services  |b YANK  |n 6964868 
994 |a 92  |b IZTAP