Cargando…

Rigidity in higher rank Abelian group actions. Vol. I, Introduction and cocycle problem /

"In a very general sense modern theory of smooth dynamical systems deals with smooth actions of "sufficiently large but not too large" groups or semigroups (usually locally compact but not compact) on a "sufficiently small" phase space (usually compact, or, sometimes, finite...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Katok, A. B.
Otros Autores: Nițica, Viorel
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2011.
Colección:Cambridge tracts in mathematics ; 185.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn733075123
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110627s2011 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCA  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9781139092807  |q (electronic bk.) 
020 |a 1139092804  |q (electronic bk.) 
020 |z 9780521879095 
020 |z 0521879094 
035 |a (OCoLC)733075123 
050 4 |a QA640.77  |b .K38 2011eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512/.25  |2 22 
049 |a UAMI 
100 1 |a Katok, A. B. 
245 1 0 |a Rigidity in higher rank Abelian group actions.  |n Vol. I,  |p Introduction and cocycle problem /  |c Anatole Katok, Viorel Nițica. 
246 3 0 |a Introduction and cocycle problem 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (vi, 313 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge tracts in mathematics ;  |v 185 
504 |a Includes bibliographical references (pages 302-310) and index. 
520 |a "In a very general sense modern theory of smooth dynamical systems deals with smooth actions of "sufficiently large but not too large" groups or semigroups (usually locally compact but not compact) on a "sufficiently small" phase space (usually compact, or, sometimes, finite volume manifolds). Important branches of dynamics specifically consider actions preserving a geometric structure with an infinite-dimensional group of automorphisms, two principal examples being a volume and a symplectic structure. The natural equivalence relation for actions is differentiable (corr. volume preserving or symplectic) conjugacy"--  |c Provided by publisher 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Rigidity (Geometry) 
650 0 |a Abelian groups. 
650 6 |a Rigidité (Géométrie) 
650 6 |a Groupes abéliens. 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 7 |a Abelian groups.  |2 fast  |0 (OCoLC)fst00794345 
650 7 |a Rigidity (Geometry)  |2 fast  |0 (OCoLC)fst01097951 
700 1 |a Nițica, Viorel. 
776 0 8 |i Print version:  |a Katok, A.B.  |t Rigidity in higher rank Abelian group actions.  |d Cambridge ; New York : Cambridge University Press, 2011-  |z 9780521879095  |w (DLC) 2011006030  |w (OCoLC)707626606 
830 0 |a Cambridge tracts in mathematics ;  |v 185. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=369450  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 369450 
994 |a 92  |b IZTAP