|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn733047773 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr mnu---unuuu |
008 |
110627s2011 njua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d EBLCP
|d E7B
|d MHW
|d YDXCP
|d OSU
|d OCLCQ
|d MERUC
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCF
|d OCLCQ
|d AGLDB
|d ZCU
|d OCLCQ
|d NJR
|d U3W
|d OCLCQ
|d VTS
|d ICG
|d INT
|d OCLCQ
|d STF
|d DKC
|d OCLCQ
|d M8D
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|
020 |
|
|
|a 9789814307840
|q (electronic bk.)
|
020 |
|
|
|a 981430784X
|q (electronic bk.)
|
020 |
|
|
|z 9789814307833
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 9814307831
|q (hardcover ;
|q alk. paper)
|
029 |
1 |
|
|a AU@
|b 000054182092
|
029 |
1 |
|
|a DEBBG
|b BV043118696
|
029 |
1 |
|
|a DEBBG
|b BV044156568
|
029 |
1 |
|
|a DEBSZ
|b 372878989
|
029 |
1 |
|
|a DEBSZ
|b 379322684
|
029 |
1 |
|
|a DEBSZ
|b 421586834
|
029 |
1 |
|
|a DEBSZ
|b 454996217
|
029 |
1 |
|
|a NZ1
|b 14256718
|
029 |
1 |
|
|a AU@
|b 000073139390
|
035 |
|
|
|a (OCoLC)733047773
|
050 |
|
4 |
|a QA166.7
|b .D88 2011eb
|
072 |
|
7 |
|a MAT
|x 036000
|2 bisacsh
|
082 |
0 |
4 |
|a 511/.6
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Dutour Sikirić, Mathieu.
|
245 |
1 |
0 |
|a Random sequential packing of cubes /
|c Mathieu Dutour Sikirić, Yoshiaki Itoh.
|
260 |
|
|
|a New Jersey :
|b World Scientific,
|c ©2011.
|
300 |
|
|
|a 1 online resource (xiii, 240 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
|
|
|a In this volume very simplified models are introduced to understand the random sequential packing models mathematically. The 1-dimensional model is sometimes called the Parking Problem, which is known by the pioneering works by Flory (1939), Renyi (1958), Dvoretzky and Robbins (1962). To obtain a 1-dimensional packing density, distribution of the minimum of gaps, etc., the classical analysis has to be studied. The packing density of the general multi-dimensional random sequential packing of cubes (hypercubes) makes a well-known unsolved problem. The experimental analysis is usually applied to ...
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface; Contents; 1. Introduction; 2. The Flory model; 3. Random interval packing; 4. On the minimum of gaps generated by 1-dimensional random packing; 5. Integral equation method for the 1-dimensional random packing; 6. Random sequential bisection and its associated binary tree; 7. The unified Kakutani Renyi model; 8. Parking cars with spin but no length; 9. Random sequential packing simulations; 10. Discrete cube packings in the cube; 11. Discrete cube packings in the torus; 12. Continuous random cube packings in cube and torus; Appendix A Combinatorial Enumeration; Bibliography; Index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Combinatorial packing and covering.
|
650 |
|
0 |
|a Sphere packings.
|
650 |
|
6 |
|a Pavage et remplissage (Géométrie combinatoire)
|
650 |
|
6 |
|a Empilements de sphères.
|
650 |
|
7 |
|a MATHEMATICS
|x Combinatorics.
|2 bisacsh
|
650 |
|
7 |
|a Combinatorial packing and covering.
|2 fast
|0 (OCoLC)fst00868982
|
650 |
|
7 |
|a Sphere packings.
|2 fast
|0 (OCoLC)fst01129672
|
700 |
1 |
|
|a Itoh, Yoshiaki,
|d 1943-
|
776 |
0 |
8 |
|i Print version:
|a Dutour Sikirić, Mathieu.
|t Random sequential packing of cubes.
|d Singapore ; Hackensack, NJ : World Scientific, ©2011
|z 9789814307833
|w (DLC) 2010027617
|w (OCoLC)587219915
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=373227
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL737608
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10480246
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 373227
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 6958477
|
994 |
|
|
|a 92
|b IZTAP
|