Cargando…

Iterative methods for ill-posed problems : an introduction /

Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the assoc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bakushinskiĭ, A. B. (Anatoliĭ Borisovich)
Otros Autores: Kokurin, M. I͡U. (Mikhail I͡Urʹevich), Smirnova, A. B. (Aleksandra Borisovna)
Formato: Electrónico eBook
Idioma:Inglés
Ruso
Publicado: Berlin ; New York : De Gruyter, ©2011.
Colección:Inverse and ill-posed problems series ; v. 54.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. The regularity condition. Newton's method
  • 1.1. Preliminary results
  • 1.2. Linearization procedure
  • 1.3. Error analysis
  • Problems
  • 2. The Gauss
  • Newton method
  • 2.1. Motivation
  • 2.2. Convergence rates
  • Problems
  • 3. The gradient method
  • 3.1. The gradient method for regular problems
  • 3.2. Ill-posed case
  • Problems
  • 4. Tikhonov's scheme
  • 4.1. The Tikhonov functional
  • 4.2. Properties of a minimizing sequence
  • 4.3. Other types of convergence
  • 4.4. Equations with noisy data
  • Problems
  • 5. Tikhonov's scheme for linear equations
  • 5.1. The main convergence result
  • 5.2. Elements of spectral theory
  • 5.3. Minimizing sequences for linear equations.
  • 5.4. A priori agreement between the regularization parameter and the error for equations with perturbed right-hand sides
  • 5.5. The discrepancy principle
  • 5.6. Approximation of a quasi-solution
  • Problems
  • 6. The gradient scheme for linear equations
  • 6.1. The technique of spectral analysis
  • 6.2. A priori stopping rule
  • 6.3. A posteriori stopping rule
  • Problems
  • 7. Convergence rates for the approximation methods in the case of linear irregular equations
  • 7.1. The source-type condition (STC)
  • 7.2. STC for the gradient method
  • 7.3. The saturation phenomena
  • 7.4. Approximations in case of a perturbed STC
  • 7.5. Accuracy of the estimates
  • Problems
  • 8. Equations with a convex discrepancy functional by Tikhonov's method
  • 8.1. Some difficulties associated with Tikhonov's method in case of a convex discrepancy functional.
  • 8.2. An illustrative example
  • Problems
  • 9. Iterative regularization principle
  • 9.1. The idea of iterative regularization
  • 9.2. The iteratively regularized gradient method
  • Problems
  • 10. The iteratively regularized Gauss
  • Newton method
  • 10.1. Convergence analysis
  • 10.2. Further properties of IRGN iterations
  • 10.3. A unified approach to the construction of iterative methods for irregular equations
  • 10.4. The reverse connection control
  • Problems
  • 11. The stable gradient method for irregular nonlinear equations
  • 11.1. Solving an auxiliary finite dimensional problem by the gradient descent method
  • 11.2. Investigation of a difference inequality
  • 11.3. The case of noisy data
  • Problems
  • 12. Relative computational efficiency of iteratively regularized methods
  • 12.1. Generalized Gauss
  • Newton methods
  • 12.2. A more restrictive source condition.
  • 12.3. Comparison to iteratively regularized gradient scheme
  • Problems
  • 13. Numerical investigation of two-dimensional inverse gravimetry problem
  • 13.1. Problem formulation
  • 13.2. The algorithm
  • 13.3. Simulations
  • Problems
  • 14. Iteratively regularized methods for inverse problem in optical tomography
  • 14.1. Statement of the problem
  • 14.2. Simple example
  • 14.3. Forward simulation
  • 14.4. The inverse problem
  • 14.5. Numerical results
  • Problems
  • 15. Feigenbaum's universality equation
  • 15.1. The universal constants
  • 15.2. Ill-posedness
  • 15.3. Numerical algorithm for 2 & le; z & le; 12
  • 15.4. Regularized method for z & ge; 13
  • Problems
  • 16. Conclusion.