Cargando…

Ergodic theory and its connection with harmonic analysis : proceedings of the 1993 Alexandria conference /

Ergodic theory is a field that is stimulating on its own, and also in its interactions with other branches of mathematics and science. In recent years, the interchanges with harmonic analysis have been especially noticeable and productive. This book contains survey papers describing the relationship...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: London Mathematical Society
Otros Autores: Petersen, Karl Endel, 1943-, Salama, Ibrahim A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 1995.
Colección:London Mathematical Society lecture note series ; 205.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn715162860
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 941020s1995 enka ob 100 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d N$T  |d OCLCF  |d OCLCO  |d YDXCP  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AGLDB  |d COO  |d OCLCQ  |d VTS  |d REC  |d STF  |d M8D  |d UKAHL  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781107362048  |q (electronic bk.) 
020 |a 1107362040  |q (electronic bk.) 
020 |z 9780521459990 
020 |z 0521459990 
029 1 |a DEBBG  |b BV043128038 
029 1 |a DEBSZ  |b 421265930 
035 |a (OCoLC)715162860 
050 4 |a QA313  |b .E73 1995eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.48  |2 23 
049 |a UAMI 
245 0 0 |a Ergodic theory and its connection with harmonic analysis :  |b proceedings of the 1993 Alexandria conference /  |c edited by Karl E. Petersen and Ibrahim A. Salama. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 1995. 
300 |a 1 online resource (viii, 437 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 205 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
520 |a Ergodic theory is a field that is stimulating on its own, and also in its interactions with other branches of mathematics and science. In recent years, the interchanges with harmonic analysis have been especially noticeable and productive. This book contains survey papers describing the relationship of ergodic theory with convergence, rigidity theory and the theory of joinings. These papers present the background of each area of interaction, the most outstanding results and promising lines of research. They should form perfect starting points for anyone beginning research in one of these areas. Thirteen related research papers describe the work; several treat questions arising from the Furstenberg multiple recurrence theory, while the remainder deal with convergence and a variety of other topics in dynamics. 
505 0 |a Cover; Title; Copyright; Contents; Preface; PART I SURVEY ARTICLES; Pointwise ergodic theorems via harmonic analysis; Introduction; Historical remarks; Prerequisites; How to use these notes; Acknowledgements; List of symbols; List of exercises; Chapter I. Good and bad sequences in periodic systems; 1. Ergodic sequences for periodic systems; Exercises for Example 1.4; 2. Sequences that are good in residue classes; Exercises for Example 1.12; 3. Sequences that are bad for periodic systems; Exercises for Example 1.18; Chapter II. Good sequences for mean L2 convergence; 1. Ergodic sequences 
505 8 |a Exercises for Example 2.22. Sequences that are good in the mean; Exercises for Example 2.11; Exercises for Example 2.15; 3. Notes on sequences bad in the mean; Exercises for Section 3; Notes to Chapter II; Chapter III. Universally good sequences for L1; Exercises for Example 3.2; Exercises for Example 3.7; Notes to Chapter III; Chapter IV. Universally good sequences for L2; 1. Ergodic, universally L2-good sequences; Exercises for Example 4.7; 2. The oscillation inequality; Exercises for Section 2; 3. The sequence of squares, I: The maximal inequality; Exercises for Section 3 
505 8 |a 4. The sequence of squares, II: The oscillation inequalityExercises for Section 4; Notes to Chapter IV; Chapter V. Universally bad sequences; 1. Banach principle and related matters; 2. Types of bad sequences; Notes to Chapter V; Chapter VI. The entropy method; 1. Bourgain's entropy method; 2. Application of entropy to constructing bad sequences; 3. Good and bad behavior of powers; Notes to Chapter VI; Chapter VII. Sequences that are good only for some Lp; References; Harmonic analysis in rigidity theory; 1. Introduction; 2. A Synopsis of Rigidity theory; 2.1. Early results. 
505 8 |a 2.2. Mostow's strong rigidity theorems.2.3. Margulis' super rigidity theorem.; 2.4. Further developments.; 2.4.1. Actions of semisimple groups and their lattice; 2.4.2. Riemannian geometry.; 2.4.3. Dynamics of amenable groups.; 3. Mautner's Phenomenon and Asymptotics of Matrix Coefficients; 3.1. The Mautner-Moore results.; 3.2. Asymptotics of matrix coefficients.; 3.3. Higher rank hyperbolic abelian actions.; 3.4. Restrictions of representations to lattices and equivariant maps.; 4. Amenability; 4.1. Definitions and basic results.; 4.2. Amenability, superrigidity and other applications. 
505 8 |a 5. Kazhdan's Property5.1. Definitions and basic results.; 5.2. Lorentz actions.; 5.3. Infinitesimal and local rigidity of actions.; 5.4. Discrete spectrum.; 5.5. Ruziewicz' problem.; 5.6. Gaps in the Hausdorff dimension of limit sets.; 5.7. Variants of Kazhdan's property.; 6. Miscellaneous Applications; 6.1. Isospectral rigidity.; 6.2. Entropy rigidity.; 6.3. Unitary representations with locally closed orbits.; References; Some properties and applications of joinings in ergodic theory; 0. Introduction; I. General study of joinings; II. Examples.; 1. Locally rank one transformations. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Ergodic theory  |v Congresses. 
650 0 |a Harmonic analysis  |v Congresses. 
650 6 |a Théorie ergodique  |v Congrès. 
650 6 |a Analyse harmonique  |v Congrès. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Ergodic theory  |2 fast 
650 7 |a Harmonic analysis  |2 fast 
655 7 |a Conference papers and proceedings  |2 fast 
700 1 |a Petersen, Karl Endel,  |d 1943- 
700 1 |a Salama, Ibrahim A. 
710 2 |a London Mathematical Society. 
776 0 8 |i Print version:  |t Ergodic theory and its connection with harmonic analysis.  |d Cambridge ; New York : Cambridge University Press, 1995  |w (DLC) 94023778 
830 0 |a London Mathematical Society lecture note series ;  |v 205. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552533  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13424968 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385494 
938 |a ebrary  |b EBRY  |n ebr10450832 
938 |a EBSCOhost  |b EBSC  |n 552533 
938 |a YBP Library Services  |b YANK  |n 3277505 
938 |a YBP Library Services  |b YANK  |n 10370306 
938 |a YBP Library Services  |b YANK  |n 10405631 
938 |a YBP Library Services  |b YANK  |n 10689714 
994 |a 92  |b IZTAP