Cargando…

Probability theory : an analytic view /

"This second edition of Daniel W. Stroock's text is suitable for first-year graduate students with a good grasp of introductory, undergraduate probability theory and a sound grounding in analysis. It is intended to provide readers with an introduction to probability theory and the analytic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stroock, Daniel W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, ©2011.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 Sums of Independent Random Variables
  • 1.1. Independence
  • 1.1.1. Independent & sigma;-Algebras
  • 1.1.2. Independent Functions
  • 1.1.3. The Radomachor Functions
  • Exercises for ʹ 1.1
  • 1.2. The Weak Law of Large Numbers
  • 1.2.1. Orthogonal Random Variables
  • 1.2.2. Independent Random Variables
  • 1.2.3. Approximate Identities
  • Exercises for ʹ 1.2
  • 1.3. Cramer's Theory of Large Deviations
  • Exercises for ʹ 1.3
  • 1.4. The Strong Law of Large Numbers
  • Exercises for ʹ 1.4
  • 1.5. Law of the Iterated Logarithm
  • Exercises for ʹ 1.5
  • ch. 2 The Central Limit Theorem
  • 2.1. The Basic Central Limit Theorem
  • 2.1.1. Lindeberg's Theorem
  • 2.1.2. The Central Limit Theorem
  • Exercises for ʹ 2.1
  • 2.2. The Berry-Esseen Theorem via Stein's Method
  • 2.2.1. L1-Berry-Esseen
  • 2.2.2. The Classical Berry Esseen Theorem
  • Exercises for ʹ 2.2.
  • 2.3. Some Extensions of The Central Limit Theorem
  • 2.3.1. The Fourier Transform
  • 2.3.2. Multidimensional Central Limit Theorem
  • 2.3.3. Higher Moments
  • Exercises for ʹ 2.3
  • 2.4. An Application to Hermite Multipliers
  • 2.4.1. Hermite Multipliers
  • 2.4.2. Beckner's Theorem
  • 2.4.3. Applications of Beckner's Theorem
  • Exercises for ʹ 2.4
  • ch. 3 Infinitely Divisible Laws
  • 3.1. Convergence of Measures on RN
  • 3.1.1. Sequential Compactness in M1RN
  • 3.1.2. Levy's Continuity Theorem
  • Exercises for ʹ 3.1
  • 3.2. The Levy-Khinchine Formula
  • 3.2.1. I(RN) Is the Closure of P(RN)
  • 3.2.2. The Formula
  • Exercises for ʹ 3.2
  • 3.3. Stable Laws
  • 3.3.1. General Results
  • 3.3.2. & alpha;-Stable Laws
  • Exercises for ʹ 3.3
  • ch. 4 Levy Processes
  • 4.1. Stochastic Processes, Some Generalities
  • 4.1.1. The Space D(RN)
  • 4.1.2. Jump Functions
  • Exercises for ʹ 4.1
  • 4.2. Discontinuous Levy Processes
  • 4.2.1. The Simple Poisson Process.
  • 4.2.2. Compound Poisson Processes
  • 4.2.3. Poisson Jump Processes
  • 4.2.4. Levy Processes with Bounded Variation
  • 4.2.5. General, Non-Gaussian Levy Processes
  • Exercises for ʹ 4.2
  • 4.3. Brownian Motion, the Gaussian Levy Process
  • 4.3.1. Deconstructing Brownian Motion
  • 4.3.2. Levy's Construction of Brownian Motion
  • 4.3.3. Levy's Construction in Context
  • 4.3.4. Brownian Paths Are Non-Differentiable
  • 4.3.5. General Levy Processes
  • Exercises for ʹ 4.3
  • ch. 5 Conditioning and Martingales
  • 5.1. Conditioning
  • 5.1.1. Kolmogorov's Definition
  • 5.1.2. Some Extensions
  • Exercises for ʹ 5.1
  • 5.2. Discrete Parameter Martingales
  • 5.2.1. Doob's Inequality and Marcinkewitz's Theorem
  • 5.2.2. Doob's Stopping Time Theorem
  • 5.2.3. Martingale Convergence Theorem
  • 5.2.4. Reversed Martingales and De Finetti's Theory
  • 5.2.5. An Application to a Tracking Algorithm
  • Exercises for ʹ 5.2
  • ch. 6 Some Extensions and Applications of Martingale Theory.
  • 6.1. Some Extensions
  • 6.1.1. Martingale Theory for a & sigma;-Finite Measure Space
  • 6.1.2. Banach Space
  • Valued Martingales
  • Exercises for ʹ 6.1
  • 6.2. Elements of Ergodic Theory
  • 6.2.1. The Maximal Ergodic Lemma
  • 6.2.2. Birkhoff's Ergodic Theorem
  • 6.2.3. Stationary Sequences
  • 6.2.4. Continuous Parameter Ergodic Theory
  • Exercises for ʹ 6.2
  • 6.3. Burkholder's Inequality
  • 6.3.1. Burkholder's Comparison Theorem
  • 6.3.2. Burkholder's Inequality
  • Exercises for ʹ 6.3
  • ch. 7 Continuous Parameter Martingales
  • 7.1. Continuous Parameter Martingales
  • 7.1.1. Progressively Measurable Functions
  • 7.1.2. Martingales: Definition and Examples
  • 7.1.3. Basic Results
  • 7.1.4. Stopping Times and Stopping Theorems
  • 7.1.5. An Integration by Parts Formula
  • Exercises for ʹ 7.1
  • 7.2. Brownian Motion and Martingales
  • 7.2.1. Levy's Characterization of Brownian Motion
  • 7.2.2. Doob-Meyer Decomposition, an Easy Case
  • 7.2.3. Burkholder's Inequality Again
  • Exercises for ʹ 7.2.
  • 7.3. The Reflection Principle Revisited
  • 7.3.1. Reflecting Symmetric Levy Processes
  • 7.3.2. Reflected Brownian Motion
  • Exercises for ʹ 7.3
  • ch. 8 Gaussian Measures on a Banach Space
  • 8.1. The Classical Wiener Space
  • 8.1.1. Classical Wiener Measure
  • 8.1.2. The Classical Cameron
  • Martin Space
  • Exercises for ʹ 8.1
  • 8.2. A Structure Theorem for Gaussian Measures
  • 8.2.1. Fernique's Theorem
  • 8.2.2. The Basic Structure Theorem
  • 8.2.3. The Cameron
  • Marin Space
  • Exercises for ʹ 8.2
  • 8.3. From Hilbert to Abstract Wiener Space
  • 8.3.1. An Isomorphism Theorem
  • 8.3.2. Wiener Series
  • 8.3.3. Orthogonal Projections
  • 8.3.4. Pinned Brownian Motion
  • 8.3.5. Orthogonal Invariance
  • Exercises for ʹ 8.3
  • 8.4. A Large Deviations Result and Strassen's Theorem
  • 8.4.1. Large Deviations for Abstract Wiener Space
  • 8.4.2. Strassen's Law of the Iterated Logarithm
  • Exercises for ʹ 8.4
  • 8.5. Euclidean Free Fields
  • 8.5.1. The Ornstein
  • Uhlenbeck Process.
  • 8.5.2. Ornstein
  • Uhlenbeck as an Abstract Wiener Space
  • 8.5.3. Higher Dimensional Free Fields
  • Exercises for ʹ 8.5
  • 8.6. Brownian Motion on a Banach Space
  • 8.6.1. Abstract Wiener Formulation
  • 8.6.2. Brownian Formulation
  • 8.6.3. Strassen's Theorem Revisited
  • Exercises for ʹ 8.6
  • ch. 9 Convergence of Measures on a Polish Space
  • 9.1. Prohorov
  • Varadarajan Theory
  • 9.1.1. Some Background
  • 9.1.2. The Weak Topology
  • 9.1.3. The Levy Metric and Completeness of M1(E)
  • Exercises for ʹ 9.1
  • 9.2. Regular Conditional Probability Distributions
  • 9.2.1. Fibering a Measure
  • 9.2.2. Representing Levy Measures via the Ito Map
  • Exercises for ʹ 9.2
  • 9.3. Donsker's Invariance Principle
  • 9.3.1. Donsker's Theorem
  • 9.3.2. Rayleigh's Random Flights Model
  • Exercise for ʹ 9.3
  • ch. 10 Wiener Measure and Partial Differential Equations
  • 10.1. Martingales and Partial Differential Equations
  • 10.1.1. Localizing and Extending Martingale Representations.
  • 10.1.2. Minimum Principles
  • 10.1.3. The Hermite Heat Equation
  • 10.1.4. The Arcsine Law
  • 10.1.5. Recurrence and Transience of Brownian Motion
  • Exercises for ʹ 10.1
  • 10.2. The Markov Property and Potential Theory
  • 10.2.1. The Markov Property for Wiener Measure
  • 10.2.2. Recurrence in One and Two Dimensions
  • 10.2.3. The Dirichlet Problem
  • Exercises for ʹ 10.2
  • 10.3. Other Heat Kernels
  • 10.3.1. A General Construction
  • 10.3.2. The Dirichlet Heat Kernel
  • 10.3.3. Feynman
  • Kac Heat Kernels
  • 10.3.4. Ground States and Associated Measures on Pathspace
  • 10.3.5. Producing Ground States
  • Exercises for ʹ 10.3
  • ch. 11 Some Classical Potential Theory
  • 11.1. Uniqueness Refined
  • 11.1.1. The Dirichlet Heat Kernel Again
  • 11.1.2. Exiting Through & part;regG
  • 11.1.3. Applications to Questions of Uniqueness
  • 11.1.4. Harmonic Measure
  • Exercises for ʹ 11.1
  • 11.2. The Poisson Problem and Green Functions
  • 11.2.1. Green Functions when N & ge; 3.
  • 11.2.2. Green Functions when N & psi; {1,2}
  • Exercises for ʹ 11.2
  • 11.3. Excessive Functions, Potentials, and Riesz Decompositions
  • 11.3.1. Excessive Functions
  • 11.3.2. Potentials and Riesz Decomposition
  • Exercises for ʹ 11.3
  • 11.4. Capacity
  • 11.4.1. The Capacitory Potential
  • 11.4.2. The Capacitory Distribution
  • 11.4.3. Wiener's Test
  • 11.4.4. Some Asymptotic Expressions Involving Capacity
  • Exercises for ʹ 11.4.