Cargando…

Modelling perception with artificial neural networks /

"Studies of the evolution of animal signals and sensory behaviour have more recently shifted from considering 'extrinsic' (environmental) determinants to 'intrinsic' (physiological) ones. The drive behind this change has been the increasing availability of neural network mod...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Tosh, Colin, Ruxton, Graeme D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Cambridge University Press, 2010.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn710993028
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 110404s2010 nyua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d CDX  |d E7B  |d OCLCQ  |d REDDC  |d OCLCQ  |d YDXCP  |d OCLCF  |d NKT  |d AUD  |d CNSPO  |d OCLCQ  |d AZK  |d UAB  |d OCLCQ  |d AGLDB  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCA  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCO 
019 |a 776967647  |a 872697184  |a 961545087  |a 987641238  |a 1167546145 
020 |a 9781139042048  |q (electronic bk.) 
020 |a 1139042041  |q (electronic bk.) 
020 |a 1139044672 
020 |a 9781139044677 
020 |a 9780511779145  |q (ebook) 
020 |a 0511779143 
020 |z 9780521763950 
020 |z 0521763959 
020 |z 9781139044677 
029 1 |a AU@  |b 000056666607 
029 1 |a AU@  |b 000058046303 
029 1 |a AU@  |b 000062595784 
029 1 |a NZ1  |b 15697794 
029 1 |a AU@  |b 000072995378 
035 |a (OCoLC)710993028  |z (OCoLC)776967647  |z (OCoLC)872697184  |z (OCoLC)961545087  |z (OCoLC)987641238  |z (OCoLC)1167546145 
050 4 |a QP441  |b .M63 2010eb 
060 4 |a 2010 I-866 
060 4 |a WL 705 
072 7 |a MED  |x 057000  |2 bisacsh 
072 7 |a PSY  |x 020000  |2 bisacsh 
082 0 4 |a 612.8/2  |2 22 
049 |a UAMI 
245 0 0 |a Modelling perception with artificial neural networks /  |c [edited by] Colin R. Tosh, Graeme D. Ruxton. 
246 3 |a Modeling perception with artificial neural networks 
260 |a New York :  |b Cambridge University Press,  |c 2010. 
300 |a 1 online resource (x, 397 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 0 |g Part I. General themes:  |g 1.  |t Neural networks for perceptual processing: from simulation tools to theories /  |r Kevin Gurney;  |g 2.  |t Sensory ecology and perceptual allocation: new prospects for neural networks /  |r Steven M. Phelps --  |g Part II.  |t The use of artificial neural networks to elucidate the nature of perceptual processes in animals:  |g 3.  |t Correlation versus gradient type motion detectors: the pros and cons /  |r Alexander Borst;  |g 4.  |t Spatial constancy and the brain: insights from neural networks /  |r Robert L. White III and Lawrence H. Snyder;  |g 5.  |t The interplay of Pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat /  |r Francesco Mannella, Marco Mirolli and Gianluca Baldassarre;  |g 6.  |t Evolution, (sequential) learning and generalization in modular and nonmodular visual neural networks /  |r Raffae.e Calabretta;  |g 7.  |t Effects of network structure on associative memory /  |r Hiraku Oshima and Tokashi Odagaki;  |g 8.  |t Neural networks and neuro-oncology: the complex interplay between brain tumour, epilepsy and cognition /  |r L. Douw [and others] --  |g Part III.  |t Artificial neural networks as models of perceptual processing in ecology and evolutionary biology:  |g 9.  |t Evolutionary diversification of mating behaviour: using artificial neural networks to study reproductive character displacement and speciation /  |r Karin S. Pfennig and Michael J. Ryan;  |g 10.  |t Applying artificial neural networks to the study of prey coloration /  |r Sami Merilaita;  |g 11.  |t Artificial neural networks in models of specialization, guild evolution and sympatric speciation /  |r Noél M.A. Holmgren, Niclas. Norrstrom and Wayne M. Getz;  |g 12.  |t Probabilistic design principles for robust multimodal communication networks /  |r David C. Krakauer, Jessica Flack and Nihat Ay;  |g 13.  |t Movement-based signalling and the physical world: modelling the changing perceptual task for receivers /  |r Richard A. Peters --  |g Part IV.  |t Methodological issues in the use of simple feedforward networks:  |g 14.  |t How training and testing histories affect generalization: a test of simple neural networks /  |r Stefano Ghirlanda and Magnus Enquist;  |g 15.  |t The need for stochastic replication of ecological neural networks /  |r Colin R. Tosh and Graeme D. Ruxton;  |g 16.  |t Methodological issues in modelling ecological learning with neural networks /  |r Daniel W. Franks and Graeme D. Ruxton;  |g 17.  |t Neural network evolution and artificial life research /  |r Dara Curran and Colin O'Riordan;  |g 18.  |t Current velocity shapes the functional connectivity of benthiscapes to stream insect movement /  |r Julian D. Olden;  |g 19.  |t A model biological neural network: the cephalopod vestibular system /  |r Roddy Williamson and Abdul Chrachri. 
520 |a "Studies of the evolution of animal signals and sensory behaviour have more recently shifted from considering 'extrinsic' (environmental) determinants to 'intrinsic' (physiological) ones. The drive behind this change has been the increasing availability of neural network models. With contributions from experts in the field, this book provides a complete survey of artificial neural networks. The book opens with two broad, introductory level reviews on the themes of the book: neural networks as tools to explore the nature of perceptual mechanisms, and neural networks as models of perception in ecology and evolutionary biology. Later chapters expand on these themes and address important methodological issues when applying artificial neural networks to study perception. The final chapter provides perspective by introducing a neural processing system in a real animal. The book provides the foundations for implementing artificial neural networks, for those new to the field, along with identifying potential research areas for specialists"--  |c Provided by publisher 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Perception  |x Computer simulation. 
650 0 |a Neural networks (Computer science) 
650 0 |a Biological models. 
650 1 2 |a Perception  |x physiology 
650 2 2 |a Models, Biological 
650 2 2 |a Neural Networks, Computer 
650 6 |a Perception  |x Simulation par ordinateur. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Modèles biologiques. 
650 7 |a MEDICAL  |x Neuroscience.  |2 bisacsh 
650 7 |a PSYCHOLOGY  |x Neuropsychology.  |2 bisacsh 
650 7 |a Biological models  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Perception  |x Computer simulation  |2 fast 
700 1 |a Tosh, Colin. 
700 1 |a Ruxton, Graeme D. 
776 0 8 |i Print version:  |t Modelling perception with artificial neural networks.  |d New York : Cambridge University Press, 2010  |z 9780521763950  |w (DLC) 2010010418  |w (OCoLC)569508969 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=361548  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13432223 
938 |a Coutts Information Services  |b COUT  |n 17668639 
938 |a ebrary  |b EBRY  |n ebr10460503 
938 |a EBSCOhost  |b EBSC  |n 361548 
938 |a YBP Library Services  |b YANK  |n 4372380 
938 |a YBP Library Services  |b YANK  |n 3876097 
938 |a YBP Library Services  |b YANK  |n 6967620 
994 |a 92  |b IZTAP