Cargando…

Orthonormal systems and Banach space geometry /

Orthonormal Systems and Banach Space Geometry describes the interplay between orthonormal expansions and Banach space geometry. Using harmonic analysis as a starting platform, classical inequalities and special functions are used to study orthonormal systems leading to an understanding of the advant...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pietsch, A. (Albrecht)
Otros Autores: Wenzel, Jörg
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, ©1998.
Colección:Encyclopedia of mathematics and its applications ; v. 70.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn708568563
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 981023s1998 enka ob 001 0 eng d
010 |z  98227912  
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d N$T  |d IDEBK  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCQ  |d AGLDB  |d OCLCQ  |d COO  |d OCLCQ  |d VTS  |d STF  |d M8D  |d UKAHL  |d INARC  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1150996774 
020 |a 9781107089105  |q (electronic bk.) 
020 |a 1107089107  |q (electronic bk.) 
020 |z 9780521624626 
020 |z 0521624622 
029 1 |a DEBBG  |b BV043140962 
029 1 |a DEBSZ  |b 421262362 
029 1 |a DKDLA  |b 820120-katalog:9910051035605765 
035 |a (OCoLC)708568563  |z (OCoLC)1150996774 
050 4 |a QA322.2  |b .P54 1998eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.732  |2 22 
049 |a UAMI 
100 1 |a Pietsch, A.  |q (Albrecht) 
245 1 0 |a Orthonormal systems and Banach space geometry /  |c Albrecht Pietsch & Jörg Wenzel. 
260 |a Cambridge :  |b Cambridge University Press,  |c ©1998. 
300 |a 1 online resource (ix, 553 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v v. 70 
504 |a Includes bibliographical references (pages 523-545) and index. 
588 0 |a Print version record. 
520 |a Orthonormal Systems and Banach Space Geometry describes the interplay between orthonormal expansions and Banach space geometry. Using harmonic analysis as a starting platform, classical inequalities and special functions are used to study orthonormal systems leading to an understanding of the advantages of systems consisting of characters on compact Abelian groups. Probabilistic concepts such as random variables and martingales are employed and Ramsey's theorem is used to study the theory of super-reflexivity. The text yields a detailed insight into concepts including type and co-type of Banach spaces, B-convexity, super-reflexivity, the vector-valued Fourier transform, the vector-valued Hilbert transform and the unconditionality property for martingale differences (UMD). A long list of unsolved problems is included as a starting point for research. This book should be accessible to graduate students and researchers with some basic knowledge of Banach space theory, real analysis, probability and algebra. 
505 0 |a Cover; Half-title; Title; Copyright; Contents; Preface; Introduction; 0 Preliminaries; 0.1 Banach spaces and operators; 0.2 Finite dimensional spaces and operators; 0.3 Classical sequence spaces; 0.4 Classical function spaces; 0.5 Lorentz spaces; 0.6 Interpolation methods; 0.7 Summation operators; 0.8 Finite representability and ultrapowers; 0.9 Extreme points; 0.10 Various tools; 1 Ideal norms and operator ideals; 1.1 Ideal norms; 1.2 Operator ideals; 1.3 Classes of Banach spaces; 2 Ideal norms associated with matrices; 2.1 Matrices; 2.2 Parseval ideal norms and 2-summing operators 
505 8 |a 2.3 Kwapien ideal norms and Hilbertian operators2.4 Ideal norms associated with Hilbert matrices; 3 Ideal norms associated with orthonormal systems; 3.1 Orthonormal systems; 3.2 Khintchine constants; 3.3 Riemann ideal norms; 3.4 Dirichlet ideal norms; 3.5 Orthonormal systems with special properties; 3.6 Tensor products of orthonormal systems; 3.7 Type and cotype ideal norms; 3.8 Characters on compact Abelian groups; 3.9 Discrete orthonormal systems; 3.10 Some universal ideal norms; 3.11 Parseval ideal norms; 4 Rademacher and Gauss ideal norms; 4.1 Rademacher functions 
505 8 |a 4.2 Rademacher type and cotype ideal norms4.3 Operators of Rademacher type; 4.4 B-convexity; 4.5 Operators of Rademacher cotype; 4.6 MP-convexity; 4.7 Gaussian random variables; 4.8 Gauss versus Rademacher; 4.9 Gauss type and cotype ideal norms; 4.10 Operators of Gauss type and cotype; 4.11 Sidon constants; 4.12 The Dirichlet ideal norms 6(#n, ftn) and 6(Sn, Sn); 4.13 Inequalities between 6(Rn, Rn) and g(R,n,J n); 4.14 The vector-valued Rademacher projection; 4.15 Parseval ideal norms and 7-summing operators; 4.16 The Maurey-Pisier theorem; 5 Trigonometric ideal norms 
505 8 |a 5.1 Trigonometric functions5.2 The Dirichlet ideal norms 6(£n, £n); 5.3 Hilbert matrices and trigonometric systems; 5.4 The vector-valued Hilbert transform; 5.5 Fourier type and cotype ideal norms; 5.6 Operators of Fourier type; 5.7 Operators of Fourier cotype; 5.8 The vector-valued Fourier transform; 5.9 Fourier versus Gauss and Rademacher; 6 Walsh ideal norms; 6.1 Walsh functions; 6.2 Walsh type and cotype ideal norms; 6.3 Operators of Walsh type; 6.4 Walsh versus Rademacher; 6.5 Walsh versus Fourier; 7 Haar ideal norms; 7.1 Martingales; 7.2 Dyadic martingales; 7.3 Haar functions 
505 8 |a 7.4 Haar type and cotype ideal norms7.5 Operators of Haar type; 7.6 Super weakly compact operators; 7.7 Martingale type ideal norms; 7.8 J-convexity; 7.9 Uniform g-convexity and uniform p-smoothness; 7.10 Uniform convexity and uniform smoothness; 8 Unconditionality; 8.1 Unconditional Riemann ideal norms; 8.2 Unconditional Dirichlet ideal norms; 8.3 Random unconditionality; 8.4 Fourier unconditionality; 8.5 Haar unconditionality/UMD; 8.6 Random Haar unconditionality; 8.7 The Dirichlet ideal norms (Wn, Wn); 8.8 The Burkholder-Bourgain theorem; 9 Miscellaneous; 9.1 Interpolation 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Banach spaces. 
650 0 |a Mathematical analysis. 
650 6 |a Espaces de Banach. 
650 6 |a Analyse mathématique. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Banach spaces  |2 fast 
650 7 |a Mathematical analysis  |2 fast 
700 1 |a Wenzel, Jörg. 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 70. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569301  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385386 
938 |a ebrary  |b EBRY  |n ebr10447407 
938 |a EBSCOhost  |b EBSC  |n 569301 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26793228 
938 |a Internet Archive  |b INAR  |n orthonormalsyste0000piet 
994 |a 92  |b IZTAP