Adams Memorial Symposium on Algebraic Topology. Manchester 1990 / 1 :
Contains a combination of selected papers given in honour of John Frank Adams which illustrate the profound influence that he had on algebraic topology.
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , |
Formato: | Electrónico Congresos, conferencias eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
©1992.
|
Colección: | London Mathematical Society lecture note series ;
175. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title; Copyright; Contents of Volume 1; Preface; 1 The work of J. F. Adarns; A. The cobar construction, the Adams spectral sequence, higher order cohomology operations, and the Hopf invariant one problem; B. Applications of K-theory; C. Characteristic classes and calculations in K-theory and cobordism; D. Stable homotopy and generalized homology; E. Lectures on Lie groups (1969) [38]; F. Finite H-spaces and compact Lie groups; G. Maps between classifying spaces of compact Lie groups; H. Modules over the Steenrod algebra and their Ext groups
- I. Miscellaneous papers in homotopy and cohomology theory. Infinite loop spaces(1975 IAS lecture notes) [61]; K. Two unpublished expository papers; Bibliography of J. F. Adams; 2 Twisted tensor products of DGA's and the Adams-Hilton model for the total space of a fibration; 1. Introduction; 2. Algebraic Preliminaries; 3. Models for twisted tensor products of DGA's; 4. An examination of Brown's equivalence; 5. The Adams-Hilton model for the total space of a fibration; References.; 3 Hochschild homology, cyclic homology, and the cobar construction; Introduction.
- 5 A splitting result for the second homology group of the general linear group1. Introduction; 2. The second Postnikov section of a double loop space; 3. The naturality of the splitting; References; 6 Low dimensional spinor representations, Adams maps and geometric dimension; 1. Introduction.; 2. Spinor representations.; 3. Proof of Theorems 1, 2 and 3.; 4. An illustrative example.; 5. Constructing the KO-periodic map; References; 7 The characteristic classes for the exceptional Lie groups; 0. Introduction.; 1. The Hopf algebra structure.
- 2. The Borel theorem and the Eilenberg-Moore spectral sequence.3. The invariant subalgebra of the Weyl group.; 4. The twisted tensor product and the E2-term CotorA{Z/p, Z/p) with A = H*(G; Z/p).; 5. A Z/2-resolution over H*(E8; Z/2).; 6. A Z/3-resolution over H*(Ad E6; Z/3).; References; 8 How can you tell two spaces apart when they have the same n-type for all n?; Example A; Example B; References; 9 A generalized Grothendieck spectral sequence; 1 Introduction; 1.1 Notation; 1.2 Organization; 2 Universal algebras & homotopical algebra; 2.1 universal algebras; 2.1.1 Cuga's