Cargando…

Graph spectra for complex networks /

Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a pow...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Van Mieghem, Piet
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn703152874
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mnu---unuuu
008 110221s2011 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OSU  |d E7B  |d OCLCQ  |d MBB  |d UIU  |d REDDC  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d CDX  |d OCLCF  |d OCLCQ  |d COO  |d OCLCQ  |d Z5A  |d UUM  |d EZC  |d CNCGM  |d INT  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d A6Q  |d S2H  |d VLY  |d MM9  |d OCLCQ  |d OCLCO  |d INTCL  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
016 7 |a 015612616  |2 Uk 
019 |a 704055985  |a 1034919018  |a 1066441956  |a 1116728012  |a 1162373486  |a 1171461667  |a 1241871478  |a 1242484855 
020 |a 9780511992445  |q (electronic bk.) 
020 |a 0511992440  |q (electronic bk.) 
020 |a 9780511988653  |q (electronic bk.) 
020 |a 0511988656  |q (electronic bk.) 
020 |a 9780511921681  |q (electronic bk.) 
020 |a 0511921683  |q (electronic bk.) 
020 |z 9780521194587  |q (hardback) 
020 |z 052119458X  |q (hardback) 
020 |a 1282976559  |q (ebk.) 
020 |a 9781282976559  |q (ebk.) 
020 |a 0511993641 
020 |a 9780511993640 
020 |a 1107214408 
020 |a 9781107214408 
020 |a 9786612976551 
020 |a 6612976551 
020 |a 0511984901 
020 |a 9780511984907 
020 |a 0511991452 
020 |a 9780511991455 
020 |a 0511986858 
020 |a 9780511986857 
020 |a 0511990464 
020 |a 9780511990465 
020 |z 9781107411470  |q (paperback) 
024 8 |a 9786612976551 
029 1 |a AU@  |b 000047155041 
029 1 |a DEBSZ  |b 372799876 
029 1 |a NZ1  |b 14775536 
029 1 |a AU@  |b 000062591523 
035 |a (OCoLC)703152874  |z (OCoLC)704055985  |z (OCoLC)1034919018  |z (OCoLC)1066441956  |z (OCoLC)1116728012  |z (OCoLC)1162373486  |z (OCoLC)1171461667  |z (OCoLC)1241871478  |z (OCoLC)1242484855 
037 |a 297655  |b MIL 
050 4 |a QA166  |b .V36 2011eb 
072 7 |a MAT  |x 013000  |2 bisacsh 
082 0 4 |a 511.5  |2 22 
049 |a UAMI 
100 1 |a Van Mieghem, Piet. 
245 1 0 |a Graph spectra for complex networks /  |c Piet Van Mieghem. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (xvi, 346 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |6 880-01  |a pt. 1. Spectra of graphs -- pt. 2. Eigensystem and polynomials. 
588 0 |a Print version record. 
520 |a Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Graph theory. 
650 7 |a MATHEMATICS  |x Graphic Methods.  |2 bisacsh 
650 7 |a Graph theory  |2 fast 
776 0 8 |i Print version:  |a Van Mieghem, Piet.  |t Graph spectra for complex networks.  |d Cambridge : Cambridge University Press, 2011  |z 9780521194587  |w (OCoLC)698483932 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=352503  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Introduction --  |g 1.1.  |t Interpretation and contemplation --  |g 1.2.  |t Outline of the book --  |g 1.3.  |t Classes of graphs --  |g 1.4.  |t Outlook --  |g pt. I  |t Spectra of graphs --  |g 2.  |t Algebraic graph theory --  |g 2.1.  |t Graph related matrices --  |g 2.2.  |t Walks and paths --  |g 3.  |t Eigenvalues of the adjacency matrix --  |g 3.1.  |t General properties --  |g 3.2.  |t number of walks --  |g 3.3.  |t Regular graphs --  |g 3.4.  |t Bounds for the largest, positive eigenvalue λ1 --  |g 3.5.  |t Eigenvalue spacings --  |g 3.6.  |t Additional properties --  |g 3.7.  |t stochastic matrix P = δ-1 A --  |g 4.  |t Eigenvalues of the Laplacian Q --  |g 4.1.  |t General properties --  |g 4.2.  |t Second smallest eigenvalue of the Laplacian Q --  |g 4.3.  |t Partitioning of a graph --  |g 4.4.  |t modularity and the modularity matrix M --  |g 4.5.  |t Bounds for the diameter --  |g 4.6.  |t Eigenvalues of graphs and subgraphs --  |g 5.  |t Spectra of special types of graphs --  |g 5.1.  |t complete graph --  |g 5.2.  |t small-world graph --  |g 5.3.  |t circuit on N nodes --  |g 5.4.  |t path of N -- 1 hops --  |g 5.5.  |t path of h hops --  |g 5.6.  |t wheel WN+1 --  |g 5.7.  |t complete biPartite graph Km, n --  |g 5.8.  |t general biPartite graph --  |g 5.9.  |t Complete multi-Partite graph --  |g 5.10.  |t m-fully meshed star topology --  |g 5.11.  |t chain of cliques --  |g 5.12.  |t lattice --  |g 6.  |t Density function of the eigenvalues --  |g 6.1.  |t Definitions --  |g 6.2.  |t density when N [→] [∞] --  |g 6.3.  |t Examples of spectral density functions --  |g 6.4.  |t Density of a sparse regular graph --  |g 6.5.  |t Random matrix theory --  |g 7.  |t Spectra of complex networks --  |g 7.1.  |t Simple observations --  |g 7.2.  |t Distribution of the Laplacian eigenvalues and of the degree --  |g 7.3.  |t Functional brain network --  |g 7.4.  |t Rewiring Watts-Strogatz small-world graphs --  |g 7.5.  |t Assortativity --  |g 7.6.  |t Reconstructability of complex networks --  |g 7.7.  |t Reaching consensus --  |g 7.8.  |t Spectral graph metrics --  |g pt. II  |t Eigensystem and polynomials --  |g 8.  |t Eigensystem of a matrix --  |g 8.1.  |t Eigenvalues and eigenvectors --  |g 8.2.  |t Functions of a matrix --  |g 8.3.  |t Hermitian and real symmetric matrices --  |g 8.4.  |t Vector and matrix norms --  |g 8.5.  |t Non-negative matrices --  |g 8.6.  |t Positive (semi) definiteness --  |g 8.7.  |t Interlacing --  |g 8.8.  |t Eigenstructure of the product AB --  |g 8.9.  |t Formulae of determinants --  |g 9.  |t Polynomials with real coefficients --  |g 9.1.  |t General properties --  |g 9.2.  |t Transforming polynomials --  |g 9.3.  |t Interpolation --  |g 9.4.  |t Euclidean algorithm --  |g 9.5.  |t Descartes' rule of signs --  |g 9.6.  |t number of real zeros in an interval --  |g 9.7.  |t Locations of zeros in the complex plane --  |g 9.8.  |t Zeros of complex functions --  |g 9.9.  |t Bounds on values of a polynomial --  |g 9.10.  |t Bounds for the spacing between zeros --  |g 9.11.  |t Bounds on the zeros of a polynomial --  |g 10.  |t Orthogonal polynomials --  |g 10.1.  |t Definitions --  |g 10.2.  |t Properties --  |g 10.3.  |t three-term recursion --  |g 10.4.  |t Zeros of orthogonal polynomials --  |g 10.5.  |t Gaussian quadrature --  |g 10.6.  |t Jacobi matrix. 
938 |a Coutts Information Services  |b COUT  |n 17276007  |c 70.00 GBP 
938 |a ebrary  |b EBRY  |n ebr10444011 
938 |a EBSCOhost  |b EBSC  |n 352503 
938 |a YBP Library Services  |b YANK  |n 3609119 
938 |a YBP Library Services  |b YANK  |n 3610759 
938 |a YBP Library Services  |b YANK  |n 3636029 
938 |a YBP Library Services  |b YANK  |n 3647717 
994 |a 92  |b IZTAP