Cargando…

Principles of plasma physics for engineers and scientists /

Senior undergraduate/graduate introductory course text which combines mathematical rigor and qualitative explanations.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Inan, Umran S.
Otros Autores: Gołkowski, Marek
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn700691127
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 110205s2011 enka ob 001 0 eng d
040 |a MERUC  |b eng  |e pn  |c MERUC  |d EBLCP  |d OCLCQ  |d IDEBK  |d GZM  |d YDXCP  |d CDX  |d E7B  |d SNK  |d REDDC  |d OCLCQ  |d N$T  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d CAMBR  |d COU  |d ORE  |d OCLCQ  |d OTZ  |d OCLCF  |d NNO  |d OCLCQ  |d OCLCO  |d OCLCA  |d COO  |d YDX  |d OCLCO  |d INT  |d OCLCO  |d NRC  |d OCLCO  |d OCLCQ  |d OCLCA  |d U3W  |d AGLDB  |d BTN  |d MHW  |d INTCL  |d AUW  |d AU@  |d OCLCO  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d S8J  |d OCL  |d OCLCQ  |d NJP  |d OCLCQ  |d K6U  |d OCLCA  |d VLY  |d OCLCA  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 701604997  |a 728835690  |a 796796352  |a 817934292  |a 828743389  |a 1114110783  |a 1162083665  |a 1241953704 
020 |a 9780511916830 
020 |a 0511916833 
020 |a 0511915020  |q (electronic bk.) 
020 |a 9780511915024  |q (electronic bk.) 
020 |a 9780511918797  |q (electronic bk.) 
020 |a 0511918798  |q (electronic bk.) 
020 |a 9780511761621  |q (electronic bk.) 
020 |a 0511761627  |q (electronic bk.) 
020 |z 9780521193726  |q (hardback) 
020 |z 0521193729  |q (hardback) 
020 |a 1107214270 
020 |a 9781107214279 
020 |a 1282930702 
020 |a 9781282930704 
020 |a 9786612930706 
020 |a 6612930705 
020 |a 0511917813 
020 |a 9780511917813 
020 |a 0511913230 
020 |a 9780511913235 
029 1 |a DEBBG  |b BV040061081 
029 1 |a DEBSZ  |b 372798977 
029 1 |a DEBSZ  |b 379317133 
029 1 |a DEBSZ  |b 445568267 
029 1 |a DKDLA  |b 820120-katalog:9910052566505765 
035 |a (OCoLC)700691127  |z (OCoLC)701604997  |z (OCoLC)728835690  |z (OCoLC)796796352  |z (OCoLC)817934292  |z (OCoLC)828743389  |z (OCoLC)1114110783  |z (OCoLC)1162083665  |z (OCoLC)1241953704 
050 4 |a QC718  |b .I435 2011eb 
072 7 |a TJF  |2 bicssc 
072 7 |a SCI  |x 024000  |2 bisacsh 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 055000  |2 bisacsh 
082 0 4 |a 530.4/4 
084 |a SCI022000  |2 bisacsh 
049 |a UAMI 
100 1 |a Inan, Umran S. 
245 1 0 |a Principles of plasma physics for engineers and scientists /  |c Umran Inan and Marek Gołkowski. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (xiv, 270 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a Senior undergraduate/graduate introductory course text which combines mathematical rigor and qualitative explanations. 
520 |a "This unified introduction provides the tools and techniques needed to analyze plasmas and connects plasma phenomena to other fields of study. Combining mathematical rigor with qualitative explanations, and linking theory to practice with example problems, this is a perfect textbook for senior undergraduate and graduate students taking one-semester introductory plasma physics courses. For the first time, material is presented in the context of unifying principles, illustrated using organizational charts, and structured in a successive progression from single particle motion, to kinetic theory and average values, through to collective phenomena of waves in plasma. This provides students with a stronger understanding of the topics covered, their interconnections, and when different types of plasma models are applicable. Furthermore, mathematical derivations are rigorous, yet concise, so physical understanding is not lost in lengthy mathematical treatments. Worked examples illustrate practical applications of theory and students can test their new knowledge with 90 end-of-chapter problems"--  |c Provided by publisher 
588 0 |a Print version record. 
505 0 |6 880-01  |a CHAPTER 1 Introduction; CHAPTER 2 Single-particle motion; CHAPTER 3 Kinetic theory of plasmas; CHAPTER 4 Moments of the Boltzmann equation; CHAPTER 5 Multiple-fluid theory of plasmas; CHAPTER 6 Single-fluid theory of plasmas: magnetohydrodynamics; CHAPTER 7 Collisions and plasma conductivity; CHAPTER 8 Plasma diffusion; CHAPTER 9 Introduction to waves in plasmas; CHAPTER 10 Waves in cold magnetized plasmas; CHAPTER 11 Effects of collisions, ions, and finite temperature; CHAPTER 12 Waves in hot plasmas. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Plasma (Ionized gases)  |v Textbooks. 
650 0 |a Physics. 
650 1 2 |a Plasma Gases 
650 2 2 |a Physics 
650 4 |a Plasma (Ionized gases) 
650 4 |a Textbooks 
650 4 |a Science 
650 6 |a Physique. 
650 7 |a physics.  |2 aat 
650 7 |a SCIENCE  |x Electromagnetism.  |2 bisacsh 
650 7 |a Physics  |2 fast 
650 7 |a Plasma (Ionized gases)  |2 fast 
655 7 |a Textbooks  |2 fast 
700 1 |a Gołkowski, Marek. 
776 0 8 |i Print version:  |a Inan, Umran S.  |t Principles of plasma physics for engineers and scientists.  |d Cambridge ; New York : Cambridge University Press, 2011  |z 9780521193726  |w (DLC) 2010038466  |w (OCoLC)651077848 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=337713  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Introduction --  |g 1.1.  |t Speed, energy, and temperature --  |g 1.2.  |t Quasi-neutrality and plasma oscillations --  |g 1.3.  |t Debye shielding --  |g Example 1-1  |t Debye length and plasma frequency --  |g 1.4.  |t Problems --  |t References --  |g 2.  |t Single-particle motion --  |g 2.1.  |t Motion in a uniform B field: gyration --  |g 2.2.  |t E x B drift --  |g Example 2-1  |t Hall thruster --  |g 2.3.  |t Particle motion in non-uniform B fields --  |g 2.3.1.  |t Gradient drift --  |g 2.3.2.  |t Curvature drift --  |g 2.3.3.  |t Other gradients of B --  |g 2.4.  |t Adiabatic invariance of the magnetic moment --  |g Example 2-2  |t Plasma confinement using magnetic mirrors --  |g 2.5.  |t Particle motion in time-varying electric fields --  |g 2.5.1.  |t Polarization drift: slowly varying E field --  |g 2.5.2.  |t Particle motion in static B and arbitrary E fields --  |g Example 2-3  |t Cyclotron resonance --  |g 2.6.  |t Summary --  |g 2.7.  |t Problems --  |t References --  |g 3.  |t Kinetic theory of plasmas --  |g 3.1.  |t Introduction --  |g 3.2.  |t Comparison of properties of gases and plasmas --  |g 3.3.  |t Velocity distribution function --  |g Example 3-1  |t Phase-space distribution function --  |g 3.4.  |t Boltzmann equation --  |g 3.5.  |t Maxwell-Boltzmann distribution --  |g 3.5.1.  |t Number density --  |g 3.5.2.  |t Temperature --  |g 3.5.3.  |t Velocity in one dimension and speed --  |g 3.5.4.  |t Degree of ionization: the Saha equation --  |g Example 3-2  |t Ionization fraction of air --  |g 3.5.5.  |t Shifted Maxwellian distribution --  |g 3.6.  |t Vlasov equation --  |g 3.6.1.  |t convective derivative in physical space and in phase space --  |g 3.7.  |t Equivalence of the particle equations of motion and the Vlasov equation --  |g 3.8.  |t Summary --  |g 3.9.  |t Problems --  |t References --  |g 4.  |t Moments of the Boltzmann equation --  |g 4.1.  |t Introduction --  |g 4.2.  |t zeroth-order moment: continuity equation --  |g 4.2.1.  |t Closer consideration of collisions and conservation of particles --  |g Example 4-1  |t Electron density in the ionosphere: day versus night --  |g 4.3.  |t first-order moment: momentum transport equation --  |g 4.3.1.  |t pressure and collision terms --  |g Example 4-2  |t Fluorescent lamp --  |g 4.4.  |t second-order moment: energy transport equation --  |g 4.5.  |t Systems of macroscopic equations: cold- and warm-plasma models --  |g 4.5.1.  |t cold-plasma model --  |g 4.5.2.  |t warm-plasma model --  |g 4.6.  |t Summary --  |g 4.7.  |t Problems --  |t Reference --  |g 5.  |t Multiple-fluid theory of plasmas --  |g 5.1.  |t Introduction --  |g 5.2.  |t Complete set of two-fluid equations --  |g Example 5-1  |t Plasma discharge for IC manufacture --  |g 5.3.  |t Fluid drifts perpendicular to B --  |g 5.4.  |t Parallel pressure balance --  |g 5.5.  |t Summary --  |g 5.6.  |t Problems --  |t Reference --  |g 6.  |t Single-fluid theory of plasmas: magnetohydrodynamics --  |g 6.1.  |t Introduction --  |g 6.2.  |t Single-fluid equations for a fully ionized plasma --  |g 6.2.1.  |t Equations of mass and charge conservation --  |g 6.2.2.  |t Equation of motion --  |g 6.2.3.  |t Generalized Ohm's law --  |g 6.3.  |t Magnetohydrodynamics plasma model --  |g 6.4.  |t Simplified MHD equations --  |g 6.4.1.  |t Frozen-in magnetic flux lines --  |g Example 6-1  |t solar wind --  |g 6.4.2.  |t Diffusion of magnetic field lines --  |g 6.5.  |t Force balance in MHD --  |g 6.5.1.  |t Magnetic forces --  |g 6.6.  |t Magnetohydrostatics --  |g 6.6.1.  |t θ-pinch --  |g 6.6.2.  |t cylindrical pinch --  |g Example 6-2  |t Tokamak --  |g 6.7.  |t Collisionless plasmas with strong magnetic field --  |g 6.7.1.  |t Mirror equilibrium --  |g 6.8.  |t Summary --  |g 6.9.  |t Problems --  |t References --  |g 7.  |t Collisions and plasma conductivity --  |g 7.1.  |t Introduction --  |g 7.2.  |t Collisions --  |g 7.2.1.  |t Weakly ionized plasmas --  |g 7.2.2.  |t Fully ionized plasmas: Coulomb collisions --  |g 7.2.3.  |t Specific resistivity --  |g 7.3.  |t Plasma conductivity --  |g 7.3.1.  |t DC conductivity --  |g Example 7-1  |t Ionospheric heating --  |g 7.3.2.  |t AC conductivity --  |g 7.3.3.  |t Conductivity with ion motion --  |g 7.4.  |t Summary --  |g 7.5.  |t Problems --  |t Reference --  |g 8.  |t Plasma diffusion --  |g 8.1.  |t Introduction --  |g 8.2.  |t Diffusion in weakly ionized plasmas --  |g 8.2.1.  |t Ambipolar diffusion in an unmagnetized plasma --  |g 8.2.2.  |t Free diffusion across a magnetic field --  |g 8.3.  |t Diffusion in fully ionized plasmas --  |g 8.4.  |t Summary --  |g 8.5.  |t Problems --  |g 9.  |t Introduction to waves in plasmas --  |g 9.1.  |t Introduction --  |g 9.2.  |t General properties of small-amplitude waves --  |g 9.3.  |t Waves in non-magnetized plasmas --  |g 9.3.1.  |t Plasma oscillations --  |g 9.3.2.  |t Transverse electromagnetic waves --  |g 9.3.3.  |t Electrostatic electron and ion waves --  |g 9.4.  |t Problems --  |g 10.  |t Waves in cold magnetized plasmas --  |g 10.1.  |t Introduction --  |g 10.2.  |t dispersion relation --  |g 10.3.  |t Waves in magnetized plasmas --  |g 10.3.1.  |t Principal modes --  |g 10.3.2.  |t Oblique propagation at an arbitrary angle θ --  |g 10.4.  |t Summary --  |g 10.5.  |t Problems --  |t References --  |g 11.  |t Effects of collisions, ions, and finite temperature on waves in magnetized plasmas --  |g 11.1.  |t Introduction --  |g 11.2.  |t Effects of collisions --  |g 11.3.  |t Effects of positive ions --  |g 11.3.1.  |t Parallel propagation (θ = 0) --  |g 11.3.2.  |t Perpendicular propagation (θ = π/2) --  |g 11.3.3.  |t Oblique propagation (arbitrary θ) --  |g 11.3.4.  |t Hydromagnetic (MHD) waves --  |g 11.4.  |t Effects of temperature --  |g 11.4.1.  |t Parallel propagation (θ = 0) --  |g 11.4.2.  |t Perpendicular propagation (θ = π/2) --  |g 11.5.  |t Summary --  |g 11.6.  |t Problems --  |g 12.  |t Waves in hot plasmas --  |g 12.1.  |t Introduction --  |g 12.2.  |t Waves in a hot isotropic plasma --  |g 12.2.1.  |t Longitudinal waves (k [œ] E) --  |g 12.2.2.  |t Transverse waves --  |g 12.2.3.  |t two-stream instability --  |g 12.3.  |t Waves in a hot magnetized plasma --  |g 12.4.  |t More on collisions in plasmas --  |g 12.4.1.  |t Krook collision model --  |g 12.5.  |t Summary --  |g 12.6.  |t Problems --  |t References --  |g 13.  |t plasma sheath and the Langmuir probe --  |g 13.1.  |t Introduction --  |g 13.2.  |t Particle flux --  |g 13.3.  |t Sheath characteristics --  |g 13.4.  |t Langmuir probe --  |g 13.5.  |t Problems --  |g Appendix  |t A Derivation of the second moment of the Boltzmann equation --  |g Appendix B  |t Useful vector relations --  |g B.1.  |t Definitions and identities --  |g B.2.  |t Relations in Cartesian coordinates --  |g B.3.  |t Relations in cylindrical coordinates --  |g B.4.  |t Relations in spherical coordinates. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH22947191 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33213549 
938 |a Coutts Information Services  |b COUT  |n 16986047 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL585322 
938 |a ebrary  |b EBRY  |n ebr10439619 
938 |a EBSCOhost  |b EBSC  |n 337713 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 293070 
938 |a YBP Library Services  |b YANK  |n 9246379 
938 |a YBP Library Services  |b YANK  |n 3610732 
938 |a YBP Library Services  |b YANK  |n 9244814 
938 |a YBP Library Services  |b YANK  |n 3589833 
994 |a 92  |b IZTAP