Physical metallurgy and advanced materials.
Physical Metallurgy and Advanced Materials is the latest edition of the classic book previously published as Modern Physical Metallurgy & Materials Engineering. Fully revised and expanded, this new edition develops on its predecessor by including detailed coverage of the latest topics in metallu...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Boston :
Butterworth Heinemann,
2007.
|
Edición: | 7th ed. / |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Atoms and atomic arrangements
- 2. Phase equilibria and structure
- 3. Crystal defects
- 4. Characterization and analysis
- 5. Physical properties
- 6. Mechanical properties I
- 7. Mechanical properties II
- Strengthening and toughening
- 8. Advanced alloys
- 9. Oxidation, corrosion and surface treatment
- 10. Non-metallics I
- Ceramics, glass, glass-ceramics
- 11. Non-metallics II
- Polymers, plastics, composites
- 12. Case examination of biomaterials, sports materials and nanomaterials.
- 1. Atoms and atomic arrangements
- 1.1. The realm of materials science
- 1.2. The free atom
- 1.2.1. The four electron quantum numbers
- 1.2.2. Nomenclature for the electronic states
- 1.3. The Periodic Table
- 1.4. Interatomic bonding in materials
- 1.5. Bonding and energy levels
- 1.6. Crystal lattices and structures
- 1.7. Crystal directions and planes
- 1.8. Stereographic projection
- 1.9. Selected crystal structures
- 1.9.1. Pure metals
- 1.9.2. Diamond and graphite
- 1.9.3. Coordination in ionic crystals
- 1.9.4. AB-type compounds
- 2. Phase equilibria and structure
- 2.1. Crystallization from the melt
- 2.1.1. Freezing of a pure metal
- 2.1.2. Plane-front and dendritic solidification at a cooled surface
- 2.1.3. Forms of cast structure
- 2.1.4. Gas porosity and segregation
- 2.1.5. Directional solidification
- 2.1.6. Production of metallic single crystals for research
- 2.2. Principles and applications of phase diagrams
- 2.2.1. The concept of a phase
- 2.2.2. The Phase Rule
- 2.2.3. Stability of phases
- 2.2.4. Two-phase equilibria
- 2.2.5. Three-phase equilibria and reactions
- 2.2.6. Intermediate phases
- 2.2.7. Limitations of phase diagrams
- 2.2.8. Some key phase diagrams
- 2.2.9. Ternary phase diagrams
- 2.3. Principles of alloy theory
- 2.3.1. Primary substitutional solid solutions
- 2.3.2. Interstitial solid solutions
- 2.3.3. Types of intermediate phases
- 2.3.4. Order-disorder phenomena
- 2.4. The mechanism of phase changes
- 2.4.1. Kinetic considerations
- 2.4.2. Homogeneous nucleation
- 2.4.3. Heterogeneous nucleation
- 2.4.4. Nucleation in solids
- 3. Crystal defects
- 3.1. Types of imperfection
- 3.2. Point defects
- 3.2.1. Point defects in metals
- 3.2.2. Point defects in non-metallic crystals
- 3.2.3. Irradiation of solids
- 3.2.4. Point defect concentration and annealing
- 3.3. Line defects
- 3.3.1. Concept of a dislocation
- 3.3.2. Edge and screw dislocations
- 3.3.3. The Burgers vector
- 3.3.4. Mechanisms of slip and climb
- 3.3.5. Strain energy associated with dislocations
- 3.3.6. Dislocations in ionic structures
- 3.4. Planar defects
- 3.4.1. Grain boundaries
- 3.4.2. Twin boundaries
- 3.4.3. Extended dislocations and stacking faults in close-packed crystals
- 3.5. Volume defects
- 3.5.1. Void formation and annealing
- 3.5.2. Irradiation and voiding
- 3.5.3. Voiding and fracture
- 3.6. Defect behavior in common crystal structures
- 3.6.1. Dislocation vector diagrams and the Thompson tetrahedron
- 3.6.2. Dislocations and stacking faults in fcc structures
- 3.6.3. Dislocations and stacking faults in cph structures
- 3.6.4. Dislocations and stacking faults in bcc structures
- 3.6.5. Dislocations and stacking faults in ordered structures
- 3.7. Stability of defects
- 3.7.1. Dislocation loops
- 3.7.2. Voids
- 3.7.3. Nuclear irradiation effects.
- 4. Characterization and analysis
- 4.1. Tools of characterization
- 4.2. Light microscopy
- 4.2.1. Basic principles
- 4.2.2. Selected microscopical techniques
- 4.3. X-ray diffraction analysis
- 4.3.1. Production and absorption of X-rays
- 4.3.2. Diffraction of X-rays by crystals
- 4.3.3. X-ray diffraction methods
- 4.3.4. Typical interpretative procedures for diffraction patterns
- 4.4. Analytical electron microscopy
- 4.4.1. Interaction of an electron beam with a solid
- 4.4.2. The transmission electron microscope (TEM)
- 4.4.3. The scanning electron microscope
- 4.4.4. Theoretical aspects of TEM
- 4.4.5. Chemical microanalysis
- 4.4.6. Electron energy-loss spectroscopy (EELS)
- 4.4.7. Auger electron spectroscopy (AES)
- 4.5. Observation of defects
- 4.5.1. Etch pitting
- 4.5.2. Dislocation decoration
- 4.5.3. Dislocation strain contrast in TEM
- 4.5.4. Contrast from crystals
- 4.5.5. Imaging of dislocations
- 4.5.6. Imaging of stacking faults
- 4.5.7. Application of dynamical theory
- 4.5.8. Weak-beam microscopy
- 4.6. Scanning probe microscopy
- 4.6.1. Scanning tunneling microscopy (STM)
- 4.6.2. Atomic force microscopy (AFM)
- 4.6.3. Applications of SPM
- 4.6.4. Nanoindentation
- 4.7. Specialized bombardment techniques
- 4.7.1. Neutron diffraction
- 4.7.2. Synchrotron radiation studies
- 4.7.3. Secondary ion mass spectrometry (SIMS)
- 4.8. Thermal analysis
- 4.8.1. General capabilities of thermal analysis
- 4.8.2. Thermogravimetric analysis
- 4.8.3. Differential thermal analysis
- 4.8.4. Differential scanning calorimetry
- 5. Physical properties
- 5.1. Introduction
- 5.2. Density
- 5.3. Thermal properties
- 5.3.1. Thermal expansion
- 5.3.2. Specific heat capacity
- 5.3.3. The specific heat curve and transformations
- 5.3.4. Free energy of transformation
- 5.4. Diffusion
- 5.4.1. Diffusion laws
- 5.4.2. Mechanisms of diffusion
- 5.4.3. Factors affecting diffusion
- 5.5. Anelasticity and internal friction
- 5.6. Ordering in alloys
- 5.6.1. Long-range and short-range order
- 5.6.2. Detection of ordering
- 5.6.3. Influence of ordering on properties
- 5.7. Electrical properties
- 5.7.1. Electrical conductivity
- 5.7.2. Semiconductors
- 5.7.3. Hall effect
- 5.7.4. Superconductivity
- 5.7.5. Oxide superconductors
- 5.8. Magnetic properties
- 5.8.1. Magnetic susceptibility
- 5.8.2. Diamagnetism and paramagnetism
- 5.8.3. Ferromagnetism
- 5.8.4. Magnetic alloys
- 5.8.5. Anti-ferromagnetism and ferrimagnetism
- 5.9. Dielectric materials
- 5.9.1. Polarization
- 5.9.2. Capacitors and insulators
- 5.9.3. Piezoelectric materials
- 5.9.4. Pyroelectric and ferroelectric materials
- 5.10. Optical properties
- 5.10.1. Reflection, absorption and transmission effects
- 5.10.2. Optical fibers
- 5.10.3. Lasers
- 5.10.4. Ceramic 'windows'
- 5.10.5. Electro-optic ceramics
- 6. Mechanical properties I
- 6.1. Mechanical testing procedures
- 6.1.1. Introduction
- 6.1.2. The tensile test
- 6.1.3. Indentation hardness testing
- 6.1.4. Impact testing
- 6.1.5. Creep testing
- 6.1.6. Fatigue testing
- 6.2. Elastic deformation
- 6.3. Plastic deformation
- 6.3.1. Slip and twinning
- 6.3.2. Resolved shear stress
- 6.3.3. Relation of slip to crystal structure
- 6.3.4. Law of critical resolved shear stress
- 6.3.5. Multiple slip
- 6.3.6. Relation between work hardening and slip
- 6.4. Dislocation behavior during plastic deformation
- 6.4.1. Dislocation mobility
- 6.4.2. Variation of yield stress with temperature and strain rate
- 6.4.3. Dislocation source operation
- 6.4.4. Discontinuous yielding
- 6.4.5. Yield points and crystal structure
- 6.4.6. Discontinuous yielding in ordered alloys
- 6.4.7. Solute-dislocation interaction
- 6.4.8. Dislocation locking and temperature
- 6.4.9. Inhomogeneity interaction
- 6.4.10. Kinetics of strain ageing
- 6.4.11. Influence of grain boundaries on plasticity
- 6.4.12. Superplasticity
- 6.5. Mechanical twinning
- 6.5.1. Crystallography of twinning
- 6.5.2. Nucleation and growth of twins
- 6.5.3. Effect of impurities on twinning
- 6.5.4. Effect of prestrain on twinning
- 6.5.5. Dislocation mechanism of twinning
- 6.5.6. Twinning and fracture
- 6.6. Strengthening and hardening mechanisms
- 6.6.1. Point defect hardening
- 6.6.2. Work hardening
- 6.6.3. Development of preferred orientation
- 6.7. Macroscopic plasticity
- 6.7.1. Tresca and von Mises criteria
- 6.7.2. Effective stress and strain
- 6.8. Annealing
- 6.8.1. General effects of annealing
- 6.8.2. Recovery
- 6.8.3. Recrystallization
- 6.8.4. Grain growth
- 6.8.5. Annealing twins
- 6.8.6. Recrystallization textures
- 6.9. Metallic creep
- 6.9.1. Transient and steady-state creep
- 6.9.2. Grain boundary contribution to creep
- 6.9.3. Tertiary creep and fracture
- 6.9.4. Creep-resistant alloy design
- 6.10. Deformation mechanism maps
- 6.11. Metallic fatigue
- 6.11.1. Nature of fatigue failure
- 6.11.2. Engineering aspects of fatigue
- 6.11.3. Structural changes accompanying fatigue
- 6.11.4. Crack formation and fatigue failure
- 6.11.5. Fatigue at elevated temperatures
- 7. Mechanical properties II
- Strengthening and toughening
- 7.1. Introduction
- 7.2. Strengthening of non-ferrous alloys by heat treatment
- 7.2.1. Precipitation hardening of Al-Cu alloys
- 7.2.2. Precipitation hardening of Al-Ag alloys
- 7.2.3. Mechanisms of precipitation hardening
- 7.2.4. Vacancies and precipitation
- 7.2.5. Duplex ageing
- 7.2.6. Particle coarsening
- 7.2.7. Spinodal decomposition
- 7.3. Strengthening of steels by heat treatment
- 7.3.1. Time-temperature-transformation diagrams
- 7.3.2. Austenite-pearlite transformation
- 7.3.3. Austenite-martensite transformation
- 7.3.4. Austenite-bainite transformation
- 7.3.5. Tempering of martensite
- 7.3.6. Thermomechanical treatments
- 7.4. Fracture and toughness
- 7.4.1. Griffith microcrack criterion
- 7.4.2. Fracture toughness
- 7.4.3. Cleavage and the ductile-brittle transition
- 7.4.4. Factors affecting brittleness of steels
- 7.4.5. Hydrogen embrittlement of steels
- 7.4.6. Intergranular fracture
- 7.4.7. Ductile failure
- 7.4.8. Rupture
- 7.4.9. Voiding and fracture at elevated temperatures
- 7.4.10. Fracture mechanism maps
- 7.4.11. Crack growth under fatigue conditions
- 7.5. Atomistic modeling of mechanical behavior
- 7.5.1. Multiscale modeling
- 7.5.2. Atomistic simulations of defects
- 8. Advanced alloys
- 8.1. Introduction
- 8.2. Commercial steels
- 8.2.1. Plain carbon steels
- 8.2.2. Alloy steels
- 8.2.3. Maraging steels
- 8.2.4. High-strength low-alloy (HSLA) steels
- 8.2.5. Dual-phase (DP) steels
- 8.2.6. Mechanically alloyed (MA) steels
- 8.2.7. Designation of steels
- 8.3. Cast irons
- 8.4. Superalloys
- 8.4.1. Basic alloying features
- 8.4.2. Nickel-based superalloy development
- 8.4.3. Dispersion-hardened superalloys
- 8.5. Titanium alloys
- 8.5.1. Basic alloying and heat-treatment features
- 8.5.2. Commercial titanium alloys
- 8.5.3. Processing of titanium alloys
- 8.6. Structural intermetallic compounds
- 8.6.1. General properties of intermetallic compounds
- 8.6.2. Nickel aluminides
- 8.6.3. Titanium aluminides
- 8.6.4. Other intermetallic compounds
- 8.7. Aluminum alloys
- 8.7.1. Designation of aluminum alloys
- 8.7.2. Applications of aluminum alloys
- 8.7.3. Aluminum-lithium alloys
- 8.7.4. Processing developments.
- 9. Oxidation, corrosion and surface treatment
- 9.1. The engineering importance of surfaces
- 9.2. Metallic corrosion
- 9.2.1. Oxidation at high temperatures
- 9.2.2. Aqueous corrosion
- 9.3. Surface engineering
- 9.3.1. The coating and modification of surfaces
- 9.3.2. Surface coating by vapor deposition
- 9.3.3. Surface coating by particle bombardment
- 9.3.4. Surface modification with high-energy beams
- 9.4. Thermal barrier coatings
- 9.5. Diamond-like carbon
- 9.6. Duplex surface engineering
- 10. Non-metallics I
- Ceramics, glass, glass-ceramics
- 10.1. Introduction
- 10.2. Sintering of ceramic powders
- 10.2.1. Powdering and shaping
- 10.2.2. Sintering
- 10.3. Some engineering and commercial ceramics
- 10.3.1. Alumina
- 10.3.2. Silica
- 10.3.3. Silicates
- 10.3.4. Perovskites, titanates and spinels
- 10.3.5. Silicon carbide
- 10.3.6. Silicon nitride
- 10.3.7. Sialons
- 10.3.8. Zirconia
- 10.4. Glasses
- 10.4.1. Structure and characteristics
- 10.4.2. Processing and properties
- 10.4.3. Glass-ceramics
- 10.5. Carbon
- 10.5.1. Diamond
- 10.5.2. Graphite
- 10.5.3. Fullerenes and related nanostructures
- 10.6. Strength of ceramics and glasses
- 10.6.1. Strength measurement for brittle materials
- 10.6.2. Statistical nature and size dependence of strength
- 10.6.3. Stress corrosion cracking of ceramics and glasses
- 10.7. A case study: thermal protection system in space shuttle orbiter
- 11. Non-metallics II
- Polymers, plastics, composites
- 11.1. Polymer molecules
- 11.2. Molecular weight
- 11.3. Polymer shape and structure
- 11.4. Polymer crystallinity
- 11.5. Polymer crystals
- 11.6. Mechanical behavior
- 11.6.1. Deformation
- 11.6.2. Viscoelasticity
- 11.6.3. Fracture
- 11.7. Plastics and additives
- 11.8. Polymer processing
- 11.9. Electrical properties
- 11.10. Composites
- 11.10.1. Particulate composites
- 11.10.2. Fiber-reinforced composites
- 11.10.3. Fiber orientations
- 11.10.4. Influence of fiber length
- 11.10.5. Composite fibers
- 11.10.6. Polymer-matrix composites (PMCs)
- 11.10.7. Metal-matrix composites (MMCs)
- 11.10.8. Ceramic-matrix composites (CMCs)
- 12. Case examination of biomaterials, sports materials and nanomaterials
- 12.1. Introduction
- 12.2. Biomaterials
- 12.2.1. Introduction and bio-requirements
- 12.2.2. Introduction to bone and tissue
- 12.2.3. Case consideration of replacement joints
- 12.2.4. Biomaterials for heart repair
- 12.2.5. Reconstructive surgery
- 12.2.6. Ophthalmics
- 12.2.7. Dental materials
- 12.2.8. Drug delivery systems
- 12.3. Sports materials
- 12.3.1. Introduction
- 12.3.2. Golf equipment
- 12.3.3. Tennis equipment
- 12.3.4. Bicycles
- 12.3.5. Skiing materials
- 12.3.6. Archery
- 12.3.7. Fencing foils
- 12.3.8. Sports protection
- 12.4. Materials for nanotechnology
- 12.4.1. Introduction
- 12.4.2. Nanoparticles
- 12.4.3. Fullerenes and nanotubes
- 12.4.4. Quantum wells, wires and dots
- 12.4.5. Bulk nanostructured solids
- 12.4.6. Mechanical properties of small material volumes
- 12.4.7. Bio-nanotechnology
- Numerical answers to problems
- Appendix 1. SI units
- Appendix 2. Conversion factors, constants and physical data.