Cargando…

Physical metallurgy and advanced materials.

Physical Metallurgy and Advanced Materials is the latest edition of the classic book previously published as Modern Physical Metallurgy & Materials Engineering. Fully revised and expanded, this new edition develops on its predecessor by including detailed coverage of the latest topics in metallu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Smallman, R. E.
Otros Autores: Ngan, A. H. W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Butterworth Heinemann, 2007.
Edición:7th ed. /
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Atoms and atomic arrangements
  • 2. Phase equilibria and structure
  • 3. Crystal defects
  • 4. Characterization and analysis
  • 5. Physical properties
  • 6. Mechanical properties I
  • 7. Mechanical properties II
  • Strengthening and toughening
  • 8. Advanced alloys
  • 9. Oxidation, corrosion and surface treatment
  • 10. Non-metallics I
  • Ceramics, glass, glass-ceramics
  • 11. Non-metallics II
  • Polymers, plastics, composites
  • 12. Case examination of biomaterials, sports materials and nanomaterials.
  • 1. Atoms and atomic arrangements
  • 1.1. The realm of materials science
  • 1.2. The free atom
  • 1.2.1. The four electron quantum numbers
  • 1.2.2. Nomenclature for the electronic states
  • 1.3. The Periodic Table
  • 1.4. Interatomic bonding in materials
  • 1.5. Bonding and energy levels
  • 1.6. Crystal lattices and structures
  • 1.7. Crystal directions and planes
  • 1.8. Stereographic projection
  • 1.9. Selected crystal structures
  • 1.9.1. Pure metals
  • 1.9.2. Diamond and graphite
  • 1.9.3. Coordination in ionic crystals
  • 1.9.4. AB-type compounds
  • 2. Phase equilibria and structure
  • 2.1. Crystallization from the melt
  • 2.1.1. Freezing of a pure metal
  • 2.1.2. Plane-front and dendritic solidification at a cooled surface
  • 2.1.3. Forms of cast structure
  • 2.1.4. Gas porosity and segregation
  • 2.1.5. Directional solidification
  • 2.1.6. Production of metallic single crystals for research
  • 2.2. Principles and applications of phase diagrams
  • 2.2.1. The concept of a phase
  • 2.2.2. The Phase Rule
  • 2.2.3. Stability of phases
  • 2.2.4. Two-phase equilibria
  • 2.2.5. Three-phase equilibria and reactions
  • 2.2.6. Intermediate phases
  • 2.2.7. Limitations of phase diagrams
  • 2.2.8. Some key phase diagrams
  • 2.2.9. Ternary phase diagrams
  • 2.3. Principles of alloy theory
  • 2.3.1. Primary substitutional solid solutions
  • 2.3.2. Interstitial solid solutions
  • 2.3.3. Types of intermediate phases
  • 2.3.4. Order-disorder phenomena
  • 2.4. The mechanism of phase changes
  • 2.4.1. Kinetic considerations
  • 2.4.2. Homogeneous nucleation
  • 2.4.3. Heterogeneous nucleation
  • 2.4.4. Nucleation in solids
  • 3. Crystal defects
  • 3.1. Types of imperfection
  • 3.2. Point defects
  • 3.2.1. Point defects in metals
  • 3.2.2. Point defects in non-metallic crystals
  • 3.2.3. Irradiation of solids
  • 3.2.4. Point defect concentration and annealing
  • 3.3. Line defects
  • 3.3.1. Concept of a dislocation
  • 3.3.2. Edge and screw dislocations
  • 3.3.3. The Burgers vector
  • 3.3.4. Mechanisms of slip and climb
  • 3.3.5. Strain energy associated with dislocations
  • 3.3.6. Dislocations in ionic structures
  • 3.4. Planar defects
  • 3.4.1. Grain boundaries
  • 3.4.2. Twin boundaries
  • 3.4.3. Extended dislocations and stacking faults in close-packed crystals
  • 3.5. Volume defects
  • 3.5.1. Void formation and annealing
  • 3.5.2. Irradiation and voiding
  • 3.5.3. Voiding and fracture
  • 3.6. Defect behavior in common crystal structures
  • 3.6.1. Dislocation vector diagrams and the Thompson tetrahedron
  • 3.6.2. Dislocations and stacking faults in fcc structures
  • 3.6.3. Dislocations and stacking faults in cph structures
  • 3.6.4. Dislocations and stacking faults in bcc structures
  • 3.6.5. Dislocations and stacking faults in ordered structures
  • 3.7. Stability of defects
  • 3.7.1. Dislocation loops
  • 3.7.2. Voids
  • 3.7.3. Nuclear irradiation effects.
  • 4. Characterization and analysis
  • 4.1. Tools of characterization
  • 4.2. Light microscopy
  • 4.2.1. Basic principles
  • 4.2.2. Selected microscopical techniques
  • 4.3. X-ray diffraction analysis
  • 4.3.1. Production and absorption of X-rays
  • 4.3.2. Diffraction of X-rays by crystals
  • 4.3.3. X-ray diffraction methods
  • 4.3.4. Typical interpretative procedures for diffraction patterns
  • 4.4. Analytical electron microscopy
  • 4.4.1. Interaction of an electron beam with a solid
  • 4.4.2. The transmission electron microscope (TEM)
  • 4.4.3. The scanning electron microscope
  • 4.4.4. Theoretical aspects of TEM
  • 4.4.5. Chemical microanalysis
  • 4.4.6. Electron energy-loss spectroscopy (EELS)
  • 4.4.7. Auger electron spectroscopy (AES)
  • 4.5. Observation of defects
  • 4.5.1. Etch pitting
  • 4.5.2. Dislocation decoration
  • 4.5.3. Dislocation strain contrast in TEM
  • 4.5.4. Contrast from crystals
  • 4.5.5. Imaging of dislocations
  • 4.5.6. Imaging of stacking faults
  • 4.5.7. Application of dynamical theory
  • 4.5.8. Weak-beam microscopy
  • 4.6. Scanning probe microscopy
  • 4.6.1. Scanning tunneling microscopy (STM)
  • 4.6.2. Atomic force microscopy (AFM)
  • 4.6.3. Applications of SPM
  • 4.6.4. Nanoindentation
  • 4.7. Specialized bombardment techniques
  • 4.7.1. Neutron diffraction
  • 4.7.2. Synchrotron radiation studies
  • 4.7.3. Secondary ion mass spectrometry (SIMS)
  • 4.8. Thermal analysis
  • 4.8.1. General capabilities of thermal analysis
  • 4.8.2. Thermogravimetric analysis
  • 4.8.3. Differential thermal analysis
  • 4.8.4. Differential scanning calorimetry
  • 5. Physical properties
  • 5.1. Introduction
  • 5.2. Density
  • 5.3. Thermal properties
  • 5.3.1. Thermal expansion
  • 5.3.2. Specific heat capacity
  • 5.3.3. The specific heat curve and transformations
  • 5.3.4. Free energy of transformation
  • 5.4. Diffusion
  • 5.4.1. Diffusion laws
  • 5.4.2. Mechanisms of diffusion
  • 5.4.3. Factors affecting diffusion
  • 5.5. Anelasticity and internal friction
  • 5.6. Ordering in alloys
  • 5.6.1. Long-range and short-range order
  • 5.6.2. Detection of ordering
  • 5.6.3. Influence of ordering on properties
  • 5.7. Electrical properties
  • 5.7.1. Electrical conductivity
  • 5.7.2. Semiconductors
  • 5.7.3. Hall effect
  • 5.7.4. Superconductivity
  • 5.7.5. Oxide superconductors
  • 5.8. Magnetic properties
  • 5.8.1. Magnetic susceptibility
  • 5.8.2. Diamagnetism and paramagnetism
  • 5.8.3. Ferromagnetism
  • 5.8.4. Magnetic alloys
  • 5.8.5. Anti-ferromagnetism and ferrimagnetism
  • 5.9. Dielectric materials
  • 5.9.1. Polarization
  • 5.9.2. Capacitors and insulators
  • 5.9.3. Piezoelectric materials
  • 5.9.4. Pyroelectric and ferroelectric materials
  • 5.10. Optical properties
  • 5.10.1. Reflection, absorption and transmission effects
  • 5.10.2. Optical fibers
  • 5.10.3. Lasers
  • 5.10.4. Ceramic 'windows'
  • 5.10.5. Electro-optic ceramics
  • 6. Mechanical properties I
  • 6.1. Mechanical testing procedures
  • 6.1.1. Introduction
  • 6.1.2. The tensile test
  • 6.1.3. Indentation hardness testing
  • 6.1.4. Impact testing
  • 6.1.5. Creep testing
  • 6.1.6. Fatigue testing
  • 6.2. Elastic deformation
  • 6.3. Plastic deformation
  • 6.3.1. Slip and twinning
  • 6.3.2. Resolved shear stress
  • 6.3.3. Relation of slip to crystal structure
  • 6.3.4. Law of critical resolved shear stress
  • 6.3.5. Multiple slip
  • 6.3.6. Relation between work hardening and slip
  • 6.4. Dislocation behavior during plastic deformation
  • 6.4.1. Dislocation mobility
  • 6.4.2. Variation of yield stress with temperature and strain rate
  • 6.4.3. Dislocation source operation
  • 6.4.4. Discontinuous yielding
  • 6.4.5. Yield points and crystal structure
  • 6.4.6. Discontinuous yielding in ordered alloys
  • 6.4.7. Solute-dislocation interaction
  • 6.4.8. Dislocation locking and temperature
  • 6.4.9. Inhomogeneity interaction
  • 6.4.10. Kinetics of strain ageing
  • 6.4.11. Influence of grain boundaries on plasticity
  • 6.4.12. Superplasticity
  • 6.5. Mechanical twinning
  • 6.5.1. Crystallography of twinning
  • 6.5.2. Nucleation and growth of twins
  • 6.5.3. Effect of impurities on twinning
  • 6.5.4. Effect of prestrain on twinning
  • 6.5.5. Dislocation mechanism of twinning
  • 6.5.6. Twinning and fracture
  • 6.6. Strengthening and hardening mechanisms
  • 6.6.1. Point defect hardening
  • 6.6.2. Work hardening
  • 6.6.3. Development of preferred orientation
  • 6.7. Macroscopic plasticity
  • 6.7.1. Tresca and von Mises criteria
  • 6.7.2. Effective stress and strain
  • 6.8. Annealing
  • 6.8.1. General effects of annealing
  • 6.8.2. Recovery
  • 6.8.3. Recrystallization
  • 6.8.4. Grain growth
  • 6.8.5. Annealing twins
  • 6.8.6. Recrystallization textures
  • 6.9. Metallic creep
  • 6.9.1. Transient and steady-state creep
  • 6.9.2. Grain boundary contribution to creep
  • 6.9.3. Tertiary creep and fracture
  • 6.9.4. Creep-resistant alloy design
  • 6.10. Deformation mechanism maps
  • 6.11. Metallic fatigue
  • 6.11.1. Nature of fatigue failure
  • 6.11.2. Engineering aspects of fatigue
  • 6.11.3. Structural changes accompanying fatigue
  • 6.11.4. Crack formation and fatigue failure
  • 6.11.5. Fatigue at elevated temperatures
  • 7. Mechanical properties II
  • Strengthening and toughening
  • 7.1. Introduction
  • 7.2. Strengthening of non-ferrous alloys by heat treatment
  • 7.2.1. Precipitation hardening of Al-Cu alloys
  • 7.2.2. Precipitation hardening of Al-Ag alloys
  • 7.2.3. Mechanisms of precipitation hardening
  • 7.2.4. Vacancies and precipitation
  • 7.2.5. Duplex ageing
  • 7.2.6. Particle coarsening
  • 7.2.7. Spinodal decomposition
  • 7.3. Strengthening of steels by heat treatment
  • 7.3.1. Time-temperature-transformation diagrams
  • 7.3.2. Austenite-pearlite transformation
  • 7.3.3. Austenite-martensite transformation
  • 7.3.4. Austenite-bainite transformation
  • 7.3.5. Tempering of martensite
  • 7.3.6. Thermomechanical treatments
  • 7.4. Fracture and toughness
  • 7.4.1. Griffith microcrack criterion
  • 7.4.2. Fracture toughness
  • 7.4.3. Cleavage and the ductile-brittle transition
  • 7.4.4. Factors affecting brittleness of steels
  • 7.4.5. Hydrogen embrittlement of steels
  • 7.4.6. Intergranular fracture
  • 7.4.7. Ductile failure
  • 7.4.8. Rupture
  • 7.4.9. Voiding and fracture at elevated temperatures
  • 7.4.10. Fracture mechanism maps
  • 7.4.11. Crack growth under fatigue conditions
  • 7.5. Atomistic modeling of mechanical behavior
  • 7.5.1. Multiscale modeling
  • 7.5.2. Atomistic simulations of defects
  • 8. Advanced alloys
  • 8.1. Introduction
  • 8.2. Commercial steels
  • 8.2.1. Plain carbon steels
  • 8.2.2. Alloy steels
  • 8.2.3. Maraging steels
  • 8.2.4. High-strength low-alloy (HSLA) steels
  • 8.2.5. Dual-phase (DP) steels
  • 8.2.6. Mechanically alloyed (MA) steels
  • 8.2.7. Designation of steels
  • 8.3. Cast irons
  • 8.4. Superalloys
  • 8.4.1. Basic alloying features
  • 8.4.2. Nickel-based superalloy development
  • 8.4.3. Dispersion-hardened superalloys
  • 8.5. Titanium alloys
  • 8.5.1. Basic alloying and heat-treatment features
  • 8.5.2. Commercial titanium alloys
  • 8.5.3. Processing of titanium alloys
  • 8.6. Structural intermetallic compounds
  • 8.6.1. General properties of intermetallic compounds
  • 8.6.2. Nickel aluminides
  • 8.6.3. Titanium aluminides
  • 8.6.4. Other intermetallic compounds
  • 8.7. Aluminum alloys
  • 8.7.1. Designation of aluminum alloys
  • 8.7.2. Applications of aluminum alloys
  • 8.7.3. Aluminum-lithium alloys
  • 8.7.4. Processing developments.
  • 9. Oxidation, corrosion and surface treatment
  • 9.1. The engineering importance of surfaces
  • 9.2. Metallic corrosion
  • 9.2.1. Oxidation at high temperatures
  • 9.2.2. Aqueous corrosion
  • 9.3. Surface engineering
  • 9.3.1. The coating and modification of surfaces
  • 9.3.2. Surface coating by vapor deposition
  • 9.3.3. Surface coating by particle bombardment
  • 9.3.4. Surface modification with high-energy beams
  • 9.4. Thermal barrier coatings
  • 9.5. Diamond-like carbon
  • 9.6. Duplex surface engineering
  • 10. Non-metallics I
  • Ceramics, glass, glass-ceramics
  • 10.1. Introduction
  • 10.2. Sintering of ceramic powders
  • 10.2.1. Powdering and shaping
  • 10.2.2. Sintering
  • 10.3. Some engineering and commercial ceramics
  • 10.3.1. Alumina
  • 10.3.2. Silica
  • 10.3.3. Silicates
  • 10.3.4. Perovskites, titanates and spinels
  • 10.3.5. Silicon carbide
  • 10.3.6. Silicon nitride
  • 10.3.7. Sialons
  • 10.3.8. Zirconia
  • 10.4. Glasses
  • 10.4.1. Structure and characteristics
  • 10.4.2. Processing and properties
  • 10.4.3. Glass-ceramics
  • 10.5. Carbon
  • 10.5.1. Diamond
  • 10.5.2. Graphite
  • 10.5.3. Fullerenes and related nanostructures
  • 10.6. Strength of ceramics and glasses
  • 10.6.1. Strength measurement for brittle materials
  • 10.6.2. Statistical nature and size dependence of strength
  • 10.6.3. Stress corrosion cracking of ceramics and glasses
  • 10.7. A case study: thermal protection system in space shuttle orbiter
  • 11. Non-metallics II
  • Polymers, plastics, composites
  • 11.1. Polymer molecules
  • 11.2. Molecular weight
  • 11.3. Polymer shape and structure
  • 11.4. Polymer crystallinity
  • 11.5. Polymer crystals
  • 11.6. Mechanical behavior
  • 11.6.1. Deformation
  • 11.6.2. Viscoelasticity
  • 11.6.3. Fracture
  • 11.7. Plastics and additives
  • 11.8. Polymer processing
  • 11.9. Electrical properties
  • 11.10. Composites
  • 11.10.1. Particulate composites
  • 11.10.2. Fiber-reinforced composites
  • 11.10.3. Fiber orientations
  • 11.10.4. Influence of fiber length
  • 11.10.5. Composite fibers
  • 11.10.6. Polymer-matrix composites (PMCs)
  • 11.10.7. Metal-matrix composites (MMCs)
  • 11.10.8. Ceramic-matrix composites (CMCs)
  • 12. Case examination of biomaterials, sports materials and nanomaterials
  • 12.1. Introduction
  • 12.2. Biomaterials
  • 12.2.1. Introduction and bio-requirements
  • 12.2.2. Introduction to bone and tissue
  • 12.2.3. Case consideration of replacement joints
  • 12.2.4. Biomaterials for heart repair
  • 12.2.5. Reconstructive surgery
  • 12.2.6. Ophthalmics
  • 12.2.7. Dental materials
  • 12.2.8. Drug delivery systems
  • 12.3. Sports materials
  • 12.3.1. Introduction
  • 12.3.2. Golf equipment
  • 12.3.3. Tennis equipment
  • 12.3.4. Bicycles
  • 12.3.5. Skiing materials
  • 12.3.6. Archery
  • 12.3.7. Fencing foils
  • 12.3.8. Sports protection
  • 12.4. Materials for nanotechnology
  • 12.4.1. Introduction
  • 12.4.2. Nanoparticles
  • 12.4.3. Fullerenes and nanotubes
  • 12.4.4. Quantum wells, wires and dots
  • 12.4.5. Bulk nanostructured solids
  • 12.4.6. Mechanical properties of small material volumes
  • 12.4.7. Bio-nanotechnology
  • Numerical answers to problems
  • Appendix 1. SI units
  • Appendix 2. Conversion factors, constants and physical data.