|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn694144622 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
101130s2010 ts ad ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d OCLCQ
|d EBLCP
|d MHW
|d DEBSZ
|d OCLCO
|d OCLCQ
|d YDXCP
|d N$T
|d OCLCF
|d OCLCQ
|d BENTH
|d OCLCQ
|d AGLDB
|d OCLCQ
|d VTS
|d STF
|d OCLCQ
|d K6U
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781608051403
|q (electronic bk.)
|
020 |
|
|
|a 1608051404
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000051590033
|
029 |
1 |
|
|a DEBBG
|b BV043128225
|
029 |
1 |
|
|a DEBSZ
|b 372797601
|
029 |
1 |
|
|a DEBSZ
|b 421313730
|
029 |
1 |
|
|a DEBSZ
|b 43109957X
|
029 |
1 |
|
|a NZ1
|b 14794509
|
029 |
1 |
|
|a AU@
|b 000062628544
|
035 |
|
|
|a (OCoLC)694144622
|
050 |
|
4 |
|a QC174.26.W28
|b S65 2010eb
|
072 |
|
7 |
|a SCI
|x 003000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 057000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 035000
|2 bisacsh
|
082 |
0 |
4 |
|a 600
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Solitary waves in fluid media /
|c edited by Claire David and Zhaosheng Feng.
|
260 |
|
|
|a [Sharjah, U.A.E.] :
|b Bentham Science Publishers,
|c 2010.
|
300 |
|
|
|a 1 online resource (v, 255 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a pt. 1. The state of the art -- pt. 2. Solitary waves as a numerical object -- pt. 3. Advanced theoretical techniques for solitary waves.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Since the first description by John Scott Russel in 1834, the solitary wave phenomenon has attracted considerable interests from scientists. The most interesting discovery since then has been the ability to integrate most of the nonlinear wave equations which govern solitary waves, from the Korteweg-de Vries equation to the nonlinear Schrödinger equation, in the 1960's. From that moment, a huge amount of theoretical works can be found on solitary waves. Due to the fact that many physical phenomena can be described by a soliton model, applications have followed each other, in telecommunications.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Solitons.
|
650 |
|
0 |
|a Differential equations, Nonlinear.
|
650 |
|
0 |
|a Fluid dynamics.
|
650 |
|
6 |
|a Solitons.
|
650 |
|
6 |
|a Équations différentielles non linéaires.
|
650 |
|
6 |
|a Dynamique des fluides.
|
650 |
|
7 |
|a SCIENCE
|x Applied Sciences.
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Inventions.
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Nonlinear
|2 fast
|
650 |
|
7 |
|a Fluid dynamics
|2 fast
|
650 |
|
7 |
|a Solitons
|2 fast
|
700 |
1 |
|
|a David, Claire.
|
700 |
1 |
|
|a Feng, Zhaosheng.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=500719
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37537135
|
938 |
|
|
|a Bentham Science Publisher
|b BENT
|n 9781608051403
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL864229
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10423508
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 500719
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3514901
|
994 |
|
|
|a 92
|b IZTAP
|