Cargando…

Solitary waves in fluid media /

Since the first description by John Scott Russel in 1834, the solitary wave phenomenon has attracted considerable interests from scientists. The most interesting discovery since then has been the ability to integrate most of the nonlinear wave equations which govern solitary waves, from the Korteweg...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: David, Claire, Feng, Zhaosheng
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Sharjah, U.A.E.] : Bentham Science Publishers, 2010.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn694144622
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 101130s2010 ts ad ob 001 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d EBLCP  |d MHW  |d DEBSZ  |d OCLCO  |d OCLCQ  |d YDXCP  |d N$T  |d OCLCF  |d OCLCQ  |d BENTH  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d OCLCQ  |d K6U  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781608051403  |q (electronic bk.) 
020 |a 1608051404  |q (electronic bk.) 
029 1 |a AU@  |b 000051590033 
029 1 |a DEBBG  |b BV043128225 
029 1 |a DEBSZ  |b 372797601 
029 1 |a DEBSZ  |b 421313730 
029 1 |a DEBSZ  |b 43109957X 
029 1 |a NZ1  |b 14794509 
029 1 |a AU@  |b 000062628544 
035 |a (OCoLC)694144622 
050 4 |a QC174.26.W28  |b S65 2010eb 
072 7 |a SCI  |x 003000  |2 bisacsh 
072 7 |a TEC  |x 057000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 4 |a 600 
049 |a UAMI 
245 0 0 |a Solitary waves in fluid media /  |c edited by Claire David and Zhaosheng Feng. 
260 |a [Sharjah, U.A.E.] :  |b Bentham Science Publishers,  |c 2010. 
300 |a 1 online resource (v, 255 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a pt. 1. The state of the art -- pt. 2. Solitary waves as a numerical object -- pt. 3. Advanced theoretical techniques for solitary waves. 
588 0 |a Print version record. 
520 |a Since the first description by John Scott Russel in 1834, the solitary wave phenomenon has attracted considerable interests from scientists. The most interesting discovery since then has been the ability to integrate most of the nonlinear wave equations which govern solitary waves, from the Korteweg-de Vries equation to the nonlinear Schrödinger equation, in the 1960's. From that moment, a huge amount of theoretical works can be found on solitary waves. Due to the fact that many physical phenomena can be described by a soliton model, applications have followed each other, in telecommunications. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Solitons. 
650 0 |a Differential equations, Nonlinear. 
650 0 |a Fluid dynamics. 
650 6 |a Solitons. 
650 6 |a Équations différentielles non linéaires. 
650 6 |a Dynamique des fluides. 
650 7 |a SCIENCE  |x Applied Sciences.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Inventions.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
650 7 |a Differential equations, Nonlinear  |2 fast 
650 7 |a Fluid dynamics  |2 fast 
650 7 |a Solitons  |2 fast 
700 1 |a David, Claire. 
700 1 |a Feng, Zhaosheng. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=500719  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37537135 
938 |a Bentham Science Publisher  |b BENT  |n 9781608051403 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL864229 
938 |a ebrary  |b EBRY  |n ebr10423508 
938 |a EBSCOhost  |b EBSC  |n 500719 
938 |a YBP Library Services  |b YANK  |n 3514901 
994 |a 92  |b IZTAP