Interatomic forces in condensed matter /
There is a continuing growth of interest in the computer simulation of materials at the atomic scale, using a variety of academic and commercial computer programs. Such programs work with very diverse models of the inter-atomic forces. This book explains how such models are constructed and their sci...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford ; New York :
Oxford University Press,
2003.
|
Colección: | Oxford series on materials modelling ;
1. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- CONTENTS
- I: THE FRAMEWORK
- 1 Essential Quantum Mechanics
- 1.1 The Time-independent Schrödinger Equation
- 1.2 Wave-mechanics of Non-interacting Fermions
- 1.3 Basis Vectors and Representations
- 1.4 Periodic Boundary Conditions
- 1.5 Local Orbitals and Spherical Harmonics
- 1.6 The Variational Principle and the Schrödinger Equation
- 1.7 The Density Matrix and the Charge Density
- 1.8 The Density of States
- 1.9 Jellium
- 1.10 The Matrix Eigenvalue Problem
- 1.11 Pseudopotentials
- 2 Essential Density Functional Theory
- 2.1 What is a Functional?
- 2.2 Functional Derivatives
- 2.3 The Thomas-Fermi Model
- 2.4 The Kohn-Sham Equations
- 3 Exploiting the Variational Principle
- 3.1 The Hellmann-Feynman Theorem
- 3.2 Perturbation Theory with the Density
- 3.3 The Second-order HKS Functional
- 3.4 The Harris-Foulkes Functional and its Generalizations
- 4 Linear response theory
- 4.1 Definition of the Response Function Xe(r, r')
- 4.2 Relationship to HKS Density Functional
- 4.3 The Non-interacting Response Function
- 4.4 The Dielectric Function
- 4.5 The Error in the Harris-Foulkes Functional.
- 4.6 Linear Response and the Green Function
- 4.7 Linear Response in Jellium
- 4.8 Electron-Electron Interactions in the Jellium Response
- 4.9 The Long Wavelength Limit of Response Functions in Jellium
- 4.10 Linear Response in a Perfect Crystal
- 4.11 Non-local Potentials
- II: MODELLING ATOMS WITHIN SOLIDS
- 5 Testing an interatomic force model
- 5.1 The Cohesive Energy and Crystal Structures
- 5.2 The Structural Energy Difference Theorem
- 5.3 Elastic Constants
- 5.4 Phonons
- 5.5 Point Defects
- 6 Pairwise Potentials in Simple Metals
- 6.1 Introduction.
- 6.2 The Energy in Terms of Pseudopotentials
- 6.3 Periodic Boundary Conditions
- 6.4 The Effective Pairwise Interaction
- 6.5 Example: The Ashcroft Empty-core Potential
- 6.6 Asymptotic Forms of the Pair Potential
- 6.7 The Pseudoatom Picture
- 7 Tight Binding
- 7.1 Introduction
- 7.2 Non-self-consistent Tight Binding
- 7.3 Slater-Koster Parameters
- 7.4 The Repulsive Energy
- 7.5 The Tight-Binding Bond Model
- 7.6 Hellmann-Feynman Forces
- 7.7 Self-consistent Tight-Binding
- 7.8 Moments of the Density of States
- 7.9 The Recursion Method
- 7.10 Second-moment Models.
- 7.11 Fourth-moment Models
- 7.12 Bond-order Potentials
- 8 Hybrid Schemes
- 8.1 Generalized Pseudopotential Theory
- 8.2 Effective Medium Theory
- 9 Ionic models
- 9.1 Introduction
- 9.2 The Rigid Ion Model Derived
- 9.3 Beyond the Rigid Ion Model
- Bibliography
- Index
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- V
- W
- Y.