Cargando…

Interatomic forces in condensed matter /

There is a continuing growth of interest in the computer simulation of materials at the atomic scale, using a variety of academic and commercial computer programs. Such programs work with very diverse models of the inter-atomic forces. This book explains how such models are constructed and their sci...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Finnis, Mike (Autor)
Autor Corporativo: Oxford University Press
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Oxford University Press, 2003.
Colección:Oxford series on materials modelling ; 1.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • CONTENTS
  • I: THE FRAMEWORK
  • 1 Essential Quantum Mechanics
  • 1.1 The Time-independent Schrödinger Equation
  • 1.2 Wave-mechanics of Non-interacting Fermions
  • 1.3 Basis Vectors and Representations
  • 1.4 Periodic Boundary Conditions
  • 1.5 Local Orbitals and Spherical Harmonics
  • 1.6 The Variational Principle and the Schrödinger Equation
  • 1.7 The Density Matrix and the Charge Density
  • 1.8 The Density of States
  • 1.9 Jellium
  • 1.10 The Matrix Eigenvalue Problem
  • 1.11 Pseudopotentials
  • 2 Essential Density Functional Theory
  • 2.1 What is a Functional?
  • 2.2 Functional Derivatives
  • 2.3 The Thomas-Fermi Model
  • 2.4 The Kohn-Sham Equations
  • 3 Exploiting the Variational Principle
  • 3.1 The Hellmann-Feynman Theorem
  • 3.2 Perturbation Theory with the Density
  • 3.3 The Second-order HKS Functional
  • 3.4 The Harris-Foulkes Functional and its Generalizations
  • 4 Linear response theory
  • 4.1 Definition of the Response Function Xe(r, r')
  • 4.2 Relationship to HKS Density Functional
  • 4.3 The Non-interacting Response Function
  • 4.4 The Dielectric Function
  • 4.5 The Error in the Harris-Foulkes Functional.
  • 4.6 Linear Response and the Green Function
  • 4.7 Linear Response in Jellium
  • 4.8 Electron-Electron Interactions in the Jellium Response
  • 4.9 The Long Wavelength Limit of Response Functions in Jellium
  • 4.10 Linear Response in a Perfect Crystal
  • 4.11 Non-local Potentials
  • II: MODELLING ATOMS WITHIN SOLIDS
  • 5 Testing an interatomic force model
  • 5.1 The Cohesive Energy and Crystal Structures
  • 5.2 The Structural Energy Difference Theorem
  • 5.3 Elastic Constants
  • 5.4 Phonons
  • 5.5 Point Defects
  • 6 Pairwise Potentials in Simple Metals
  • 6.1 Introduction.
  • 6.2 The Energy in Terms of Pseudopotentials
  • 6.3 Periodic Boundary Conditions
  • 6.4 The Effective Pairwise Interaction
  • 6.5 Example: The Ashcroft Empty-core Potential
  • 6.6 Asymptotic Forms of the Pair Potential
  • 6.7 The Pseudoatom Picture
  • 7 Tight Binding
  • 7.1 Introduction
  • 7.2 Non-self-consistent Tight Binding
  • 7.3 Slater-Koster Parameters
  • 7.4 The Repulsive Energy
  • 7.5 The Tight-Binding Bond Model
  • 7.6 Hellmann-Feynman Forces
  • 7.7 Self-consistent Tight-Binding
  • 7.8 Moments of the Density of States
  • 7.9 The Recursion Method
  • 7.10 Second-moment Models.
  • 7.11 Fourth-moment Models
  • 7.12 Bond-order Potentials
  • 8 Hybrid Schemes
  • 8.1 Generalized Pseudopotential Theory
  • 8.2 Effective Medium Theory
  • 9 Ionic models
  • 9.1 Introduction
  • 9.2 The Rigid Ion Model Derived
  • 9.3 Beyond the Rigid Ion Model
  • Bibliography
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • V
  • W
  • Y.