Cargando…

Large-scale inference : empirical Bayes methods for estimation, testing, and prediction /

We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeate...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Efron, Bradley
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, ©2010.
Colección:Institute of Mathematical Statistics monographs ; 1.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn670430668
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mnu---unuuu
008 101018s2010 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OSU  |d CDX  |d E7B  |d OCLCQ  |d REDDC  |d OCLCQ  |d SNK  |d COO  |d YDXCP  |d SFB  |d IDEBK  |d HS0  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d COU  |d CAMBR  |d OCLCF  |d OCLCQ  |d LLB  |d OCLCQ  |d LIP  |d OCLCO  |d PIFAR  |d OCLCQ  |d NJR  |d WY@  |d OCLCO  |d OCLCA  |d OCLCQ  |d LUE  |d OCLCO  |d AU@  |d WYU  |d OCLCA  |d AGLDB  |d OCLCQ  |d OCLCO  |d A6Q  |d LVT  |d OCLCA  |d LUN  |d OCLCQ  |d OCLCO  |d AUW  |d OCLCO  |d OCL  |d OCLCQ 
015 |a GBB075398  |2 bnb 
016 7 |a 015583548  |2 Uk 
019 |a 679933456  |a 680228329  |a 712994428  |a 720823315  |a 741647971  |a 990523002  |a 1059077857  |a 1066420562  |a 1096217566  |a 1117876496  |a 1168155640  |a 1170452990  |a 1171278992 
020 |a 9780511918575  |q (electronic bk.) 
020 |a 0511918577  |q (electronic bk.) 
020 |a 9780511761362  |q (electronic bk.) 
020 |a 0511761368  |q (electronic bk.) 
020 |a 9786612818745 
020 |a 6612818743 
020 |a 9781107619678  |q (paperback) 
020 |a 110761967X 
020 |z 9780521192491  |q (hardback) 
020 |z 0521192498  |q (hardback) 
020 |z 9780511917592 
020 |z 0511917597 
020 |z 0511913001 
020 |z 9780511913006 
024 8 |a 9786612818745 
029 1 |a CHNEW  |b 000638355 
029 1 |a DEBSZ  |b 372728626 
035 |a (OCoLC)670430668  |z (OCoLC)679933456  |z (OCoLC)680228329  |z (OCoLC)712994428  |z (OCoLC)720823315  |z (OCoLC)741647971  |z (OCoLC)990523002  |z (OCoLC)1059077857  |z (OCoLC)1066420562  |z (OCoLC)1096217566  |z (OCoLC)1117876496  |z (OCoLC)1168155640  |z (OCoLC)1170452990  |z (OCoLC)1171278992 
037 |a 281874  |b MIL 
050 4 |a QA279.5  |b .E39 2010eb 
072 7 |a MAT  |x 029010  |2 bisacsh 
082 0 4 |a 519.542  |2 22 
049 |a UAMI 
100 1 |a Efron, Bradley. 
245 1 0 |a Large-scale inference :  |b empirical Bayes methods for estimation, testing, and prediction /  |c Bradley Efron. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c ©2010. 
300 |a 1 online resource (xii, 263 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Institute of mathematical statistics monographs ;  |v 1 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Prologue -- Acknowledgments -- 1 Empirical Bayes and the James-Stein Estimator -- 1.1 Bayes Rule and Multivariate Normal Estimation -- 1.2 Empirical Bayes Estimation -- 1.3 Estimating the Individual Components -- 1.4 Learning from the Experience of Others -- 1.5 Empirical Bayes Confidence Intervals -- Notes -- 2 Large-Scale Hypothesis Testing -- 2.1 A Microarray Example -- 2.2 Bayesian Approach -- 2.3 Empirical Bayes Estimates -- 2.4 Fdr(Z) as a Point Estimate -- 2.5 Independence versus Correlation -- 2.6 Learning from the Experience of Others II -- Notes -- 3 Significance Testing Algorithms -- 3.1 p-Values and z-Values -- 3.2 Adjusted p-Values and the FWER -- 3.3 Stepwise Algorithms -- 3.4 Permutation Algorithms -- 3.5 Other Control Criteria -- Notes -- 4 False Discovery Rate Control -- 4.1 True and False Discoveries -- 4.2 Benjamini and Hochberg's FDR Control Algorithm -- 4.3 Empirical Bayes Interpretation -- 4.4 Is FDR Control"Hypothesis Testing"? -- 4.5 Variations on the Benjamini-Hochberg Algorithm -- 4.6 Fdr and Simultaneous Tests of Correlation -- Notes -- 5 Local False Discovery Rates -- 5.1 Estimating the Local False Discovery Rate -- 5.2 Poisson Regression Estimates for f (z) -- 5.3 Inference and Local False Discovery Rates -- 5.4 Power Diagnostics -- Notes -- 6 Theoretical, Permutation, and Empirical Null Distributions -- 6.1 Four Examples -- A. Leukemia study -- B. Chi-square data -- C. Police data -- D. HIV data -- 6.2 Empirical Null Estimation -- 6.3 The MLE Method for Empirical Null Estimation -- 6.4 Why the Theoretical Null May Fail -- 6.5 Permutation Null Distributions -- Notes -- 7 Estimation Accuracy -- 7.1 Exact Covariance Formulas -- 7.2 Rms Approximations -- 7.3 Accuracy Calculations for General Statistics -- 7.4 The Non-Null Distribution of z-Values -- 7.5 Bootstrap Methods -- Notes -- 8 Correlation Questions -- 8.1 Row and Column Correlations -- Standardization -- 8.2 Estimating the Root Mean Square Correlation -- Simulating correlated z-values -- 8.3 Are a Set of Microarrays Independent of Each Other? -- 8.4 Multivariate Normal Calculations -- Effective sample size -- Correlation of t-values -- 8.5 Count Correlations -- Notes -- 9 Sets of Cases (Enrichment) -- 9.1 Randomization and Permutation -- 9.2 Efficient Choice of a Scoring Function -- 9.3 A Correlation Model -- 9.4 Local Averaging -- Notes -- 10 Combination, Relevance, and Comparability -- 10.1 The Multi-Class Model -- 10.2 Small Subclasses and Enrichment -- Enrichment -- Efficiency -- 10.3 Relevance -- 10.4 Are Separate Analyses Legitimate? -- 10.5 Comparability -- Notes -- 11 Prediction and Effect Size Estimation -- 11.1 A Simple Model -- Cross-validation -- Student-t effects -- Correlation corrections -- 11.2 Bayes and Empirical Bayes Prediction Rules -- 11.3 Prediction and Local False Discovery Rates -- 11.4 Effect Size Estimation -- False coverage rate control -- 11.5 The Missing Species Problem -- Notes -- Appendix A: Exponential Families -- A.1 Multiparameter Exponential Families -- A.2 Lindsey's Method -- Appendix B: Data Sets and Programs. 
520 |a We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Statistics. 
650 1 2 |a Bayes Theorem 
650 2 2 |a Statistics as Topic 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a Théorème de Bayes. 
650 6 |a Statistiques. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Bayesian Analysis.  |2 bisacsh 
650 7 |a Statistics.  |2 fast  |0 (OCoLC)fst01132103 
650 7 |a Bayesian statistical decision theory.  |2 fast  |0 (OCoLC)fst00829019 
776 0 8 |i Print version:  |a Efron, Bradley.  |t Large-scale inference.  |d Cambridge : Cambridge University Press, 2010  |z 9780521192491  |w (OCoLC)639166324 
830 0 |a Institute of Mathematical Statistics monographs ;  |v 1. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=337701  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 15746367 
938 |a ebrary  |b EBRY  |n ebr10421550 
938 |a EBSCOhost  |b EBSC  |n 337701 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 281874 
938 |a YBP Library Services  |b YANK  |n 3500702 
938 |a YBP Library Services  |b YANK  |n 3496941 
938 |a YBP Library Services  |b YANK  |n 3517894 
938 |a YBP Library Services  |b YANK  |n 11132824 
994 |a 92  |b IZTAP