Cargando…

Discrete oscillator design : linear, nonlinear, transient, and noise domains /

"Written by a recognized expert in the field, this authoritative one-stop resource covers the practical design of high-frequency oscillators with lumped, distributed, dielectric, and piezoelectric resonators. Including numerous examples, the book details important linear, nonlinear harmonic bal...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rhea, Randall W. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Norwood, MA : Artech House, ©2010.
Colección:Artech House microwave library.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Linear Techniques
  • 1.1. Open-Loop Method
  • 1.2. Starting Conditions
  • 1.3. Random Resonator and Amplifier Combination
  • 1.4. Naming Conventions
  • 1.5. Amplifiers for Sustaining Stages
  • 1.6. Resonators
  • 1.6.1. R-C Phase Shift Network
  • 1.6.2. Delay-Line Phase. Shift Network
  • 1.7. One-Port Method
  • 1.8. Analyzing Existing Oscillators
  • 1.9. Optimizing the Design
  • 1.10. Statistical Analysis
  • 1.11. Summary
  • 2. Nonlinear Techniques
  • 2.1. Introduction
  • 2.2. Harmonic Balance Overview
  • 2.3. Nonlinear Amplifiers
  • 2.4. Nonlinear Open-Loop Cascade
  • 2.5. Nonlinear HB Colpitts Example
  • 2.6. Nonlinear Negative-Resistance Oscillator
  • 2.7. Output Coupling
  • 2.8. Passive Level Control
  • 2.9. Supply Pushing
  • 2.10. Spurious Modes
  • 2.11. Ultimate Test
  • 3. Transient Techniques
  • 3.1. Introduction
  • 3.2. Starting Modes
  • 3.3. Starting Basic Example
  • 3.4. Simulation Techniques
  • 3.5. Second Starting Example
  • 3.6. Starting Case Study
  • 3.7. Triggering
  • 3.8. Simulation Techniques for High Loaded Q
  • 3.9. Steady-State Oscillator Waveforms
  • 3.10. Waveform Derived Output Spectrum
  • 4. Noise
  • 4.1. Definitions
  • 4.2. Predicting Phase Noise
  • 4.3. Measuring Phase Noise
  • 4.4. Designing for Low Phase Noise
  • 4.5. Nonlinear Noise Simulation
  • 4.6. PLL Noise
  • 5. General-Purpose Oscillators
  • 5.1. Comments on the Examples
  • 5.2. Oscillators Without Resonators
  • 5.3. L-C Oscillators
  • 5.4. Oscillator Topology Selection
  • 6. Distributed Oscillators
  • 6.1. Resonator Technologies
  • 6.2. Lumped and Distributed Equivalents
  • 6.3. Quarter-Wavelength Resonators
  • 6.4. Distributed Oscillator Examples
  • 6.5. DRO Oscillators
  • 7. Tuned Oscillators
  • 7.1. Resonator Tuning Bandwidth
  • 7.2. Resonator Voltage
  • 7.3. Permeability Tuning
  • 7.4. Tunable Oscillator Examples
  • 7.5. YIG Oscillators
  • 8. Piezoelectric Oscillators
  • 8.1. Bulk Quartz Resonators
  • 8.2. Fundamental Mode Crystal Oscillators
  • 8.3. Overtone Mode Crystal Oscillators
  • 8.4. Crystal Oscillator Examples Summary
  • 8.5. Oscillator with Frequency Multiplier
  • 8.6. Crystal Oscillator Starting
  • 8.7. Surface Acoustic Wave Resonators
  • 8.8. SAW Oscillators
  • 8.9. Piezoelectric Ceramic Resonators
  • 8.10. MEMS and FBAR Resonators
  • Appendix A. Modeling
  • A.1. Capacitors
  • A.2. Varactors
  • A.3. Inductors
  • A.4. Helical Transmission Lines
  • A.5. Signal Control Devices
  • A.6. Characteristic Impedance of Transmission Lines
  • A.7. Helical Resonators
  • Appendix B. Device Biasing
  • B.1. Biasing Bipolar Transistors
  • B.2. FET Bias Networks
  • B.3. Bias 19 MMIC Gain Block.