Discrete oscillator design : linear, nonlinear, transient, and noise domains /
"Written by a recognized expert in the field, this authoritative one-stop resource covers the practical design of high-frequency oscillators with lumped, distributed, dielectric, and piezoelectric resonators. Including numerous examples, the book details important linear, nonlinear harmonic bal...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Norwood, MA :
Artech House,
©2010.
|
Colección: | Artech House microwave library.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Linear Techniques
- 1.1. Open-Loop Method
- 1.2. Starting Conditions
- 1.3. Random Resonator and Amplifier Combination
- 1.4. Naming Conventions
- 1.5. Amplifiers for Sustaining Stages
- 1.6. Resonators
- 1.6.1. R-C Phase Shift Network
- 1.6.2. Delay-Line Phase. Shift Network
- 1.7. One-Port Method
- 1.8. Analyzing Existing Oscillators
- 1.9. Optimizing the Design
- 1.10. Statistical Analysis
- 1.11. Summary
- 2. Nonlinear Techniques
- 2.1. Introduction
- 2.2. Harmonic Balance Overview
- 2.3. Nonlinear Amplifiers
- 2.4. Nonlinear Open-Loop Cascade
- 2.5. Nonlinear HB Colpitts Example
- 2.6. Nonlinear Negative-Resistance Oscillator
- 2.7. Output Coupling
- 2.8. Passive Level Control
- 2.9. Supply Pushing
- 2.10. Spurious Modes
- 2.11. Ultimate Test
- 3. Transient Techniques
- 3.1. Introduction
- 3.2. Starting Modes
- 3.3. Starting Basic Example
- 3.4. Simulation Techniques
- 3.5. Second Starting Example
- 3.6. Starting Case Study
- 3.7. Triggering
- 3.8. Simulation Techniques for High Loaded Q
- 3.9. Steady-State Oscillator Waveforms
- 3.10. Waveform Derived Output Spectrum
- 4. Noise
- 4.1. Definitions
- 4.2. Predicting Phase Noise
- 4.3. Measuring Phase Noise
- 4.4. Designing for Low Phase Noise
- 4.5. Nonlinear Noise Simulation
- 4.6. PLL Noise
- 5. General-Purpose Oscillators
- 5.1. Comments on the Examples
- 5.2. Oscillators Without Resonators
- 5.3. L-C Oscillators
- 5.4. Oscillator Topology Selection
- 6. Distributed Oscillators
- 6.1. Resonator Technologies
- 6.2. Lumped and Distributed Equivalents
- 6.3. Quarter-Wavelength Resonators
- 6.4. Distributed Oscillator Examples
- 6.5. DRO Oscillators
- 7. Tuned Oscillators
- 7.1. Resonator Tuning Bandwidth
- 7.2. Resonator Voltage
- 7.3. Permeability Tuning
- 7.4. Tunable Oscillator Examples
- 7.5. YIG Oscillators
- 8. Piezoelectric Oscillators
- 8.1. Bulk Quartz Resonators
- 8.2. Fundamental Mode Crystal Oscillators
- 8.3. Overtone Mode Crystal Oscillators
- 8.4. Crystal Oscillator Examples Summary
- 8.5. Oscillator with Frequency Multiplier
- 8.6. Crystal Oscillator Starting
- 8.7. Surface Acoustic Wave Resonators
- 8.8. SAW Oscillators
- 8.9. Piezoelectric Ceramic Resonators
- 8.10. MEMS and FBAR Resonators
- Appendix A. Modeling
- A.1. Capacitors
- A.2. Varactors
- A.3. Inductors
- A.4. Helical Transmission Lines
- A.5. Signal Control Devices
- A.6. Characteristic Impedance of Transmission Lines
- A.7. Helical Resonators
- Appendix B. Device Biasing
- B.1. Biasing Bipolar Transistors
- B.2. FET Bias Networks
- B.3. Bias 19 MMIC Gain Block.