|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn666952304 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
100929s2004 njuab ob 101 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d OCLCQ
|d N$T
|d E7B
|d OCLCF
|d OCLCO
|d YDXCP
|d OCL
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d AGLDB
|d OCLCQ
|d VNS
|d OCLCQ
|d VTS
|d M8D
|d UKAHL
|d VLY
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9789812702630
|q (electronic bk.)
|
020 |
|
|
|a 9812702636
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000049162975
|
029 |
1 |
|
|a AU@
|b 000053009889
|
029 |
1 |
|
|a DEBBG
|b BV043136508
|
029 |
1 |
|
|a DEBSZ
|b 42129907X
|
029 |
1 |
|
|a GBVCP
|b 803394799
|
035 |
|
|
|a (OCoLC)666952304
|
050 |
|
4 |
|a G70.39
|
072 |
|
7 |
|a TEC
|x 036000
|2 bisacsh
|
082 |
0 |
4 |
|a 621.3678
|2 22
|
049 |
|
|
|a UAMI
|
111 |
2 |
|
|a International Workshop on the Analysis of Multi-temporal Remote Sensing Images
|n (2nd :
|d 2003 :
|c Ispra, Italy)
|
245 |
1 |
0 |
|a Proceedings of the Second International Workshop on the Analysis of Multi-Temporal Remote Sensing Images :
|b Multitemp 2003, Joint Research Centre, Ispra, Italy, 16-18 July 2003 /
|c editors, Paul C. Smits, Lorenzo Bruzzone.
|
246 |
3 |
0 |
|a Analysis of Multi-Temporal Remote Sensing Images
|
246 |
3 |
|
|a Multitemp 2003
|
260 |
|
|
|a [River Edge] N.J. :
|b World Scientific,
|c ©2004.
|
300 |
|
|
|a 1 online resource :
|b illustrations, maps
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Series in remote sensing ;
|v vol. 3
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Foreword; Contents; A Comparative Assessment of Similarity Measures for Registration of Multi-Temporal Remote Sensing Images H.-M. Chen, M.K. Arora, and P.K. Varshney; Image Analysis and Algorithms; 1. Introduction; 2. Computation of mutual information between two images; 3. Generalized partial volume estimation (GPVE) algorithm for joint histogram estimation; 4. Registration consistency; 5. Experimental results and discussion; 6. Conclusions; Acknowledgments; References
|
505 |
8 |
|
|a Attempts at Automatic Video Frame Mosaicing and Band to Band Registration of Data Generated by the Variable Interference Filter Imaging Spectrometer (VIFIS) N.E. Kirby, J.G.C. Monk, J.M. Anderson, and A.P. Cracknell1. Introduction; 2. Video Frame Registration; 2.1. Correlation based matching; 2.2. Ordinal Measures; 2.3. Invariant Moments; 2.4. False Match Removal; 3. Band to Band Registration; 4. Conclusion; References; Extending Time-Series of Satellite Images by Radiometric Intercalibration A. Roder, T. Kummerle, and J. Hill; 1. Introduction; 1.1. The importance of sensor calibration
|
505 |
8 |
|
|a 1.2. Radiometric intercalibration1.3. The radiometric intercalibration approach; 2. Datasets; 3. Input data specifications and sensitivity analyses; 4. Radiometric intercalibration -- results and discussion; 5. Conclusions and future perspectives; Acknowledgments; References; Feature Detection in Multi-Temporal SAR Images F.T. Bujor, E. Trouve, L. Valet, Ph. Bolon, J.M. Nicolas, and J.P. Rudant; Abstract; 1. Introduction; 2. Change detection in multi-temporal SAR imagery; 3. Information extraction; 3.1. Spatial edge attribute; 3.2. Temporal change attribute; 3.3. 3D-Texture attribute
|
505 |
8 |
|
|a 4. Symbolic information fusion5. Application; 6. Conclusions and perspectives; References; Trajectory of Dynamic Clusters in Image Time-Series P. Heas, M. Datcu, and A. Giros; 1. Introduction; 1.1. Times series of satellite images; 1.2. Information mining by analyzing the cluster dynamics; 2. Investigating the dynamics of clusters; 2.1. Multitempoml clustering; 2.2. Time- localized clustering; 2.3. Analyzes of the dynamics of the feature space; 2.4. Proposal of solutions for dynamic cluster modeling; 2.4.1. Minimum description length (MDL) principle for Gaussian mixture modeling
|
505 |
8 |
|
|a 2.4.2. Modeling a Gaussian mixture evolution3. Results; 4. Conclusion; References; What Have Quantitative Change Indicators and Fractal Dimension in Common? K. Nackaerts, S. Fleck, B. Muys, and P. Coppin; 1. Introduction; 2. Materials and methods; 2.1. Study area; 2.2. Field measurements of leaf urea index and fractal dimension; 2.3. Satellite image analysis; 3. Results and discussion; 3.1. Field measurements; 4. Conclusions; Acknowledgements; References; A Reduced Rank Regression Mixture Model for Change Validation in Aerial Images F. Pe'rez Nava and J.M. Ga'lvez Lamolda; 1. Introduction
|
520 |
|
|
|a The development of effective methodologies for the analysis of multi-temporal data is one of the most important and challenging issues that the remote sensing community will face in the coming years. Its importance and timeliness are directly related to the ever-increasing quantity of multi-temporal data provided by the numerous remote sensing satellites that orbit our planet. The synergistic use of multi-temporal remote sensing data and advanced analysis methodologies results in the possibility of solving complex problems related to the monitoring of the Earth's surface and atmosphere at diff.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Remote sensing
|x Data processing
|v Congresses.
|
650 |
|
6 |
|a Télédétection
|x Informatique
|v Congrès.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Remote Sensing & Geographic Information Systems.
|2 bisacsh
|
650 |
|
7 |
|a Remote sensing
|x Data processing
|2 fast
|
653 |
1 |
|
|a Multi temporal remote sensing images
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|
700 |
1 |
|
|a Smits, Paul.
|
700 |
1 |
|
|a Bruzzone, Lorenzo.
|
776 |
0 |
8 |
|i Print version:
|a International Workshop on the Analysis of Multi-Temporal Remote Sensing Images (2nd : 2003 : Ispra, Italy).
|t Proceedings of the Second International Workshop on the Analysis of Multi-Temporal Remote Sensing Images.
|d [River Edge] N.J. : World Scientific, ©2004
|z 9789812389152
|w (OCoLC)57372099
|
830 |
|
0 |
|a Series in remote sensing ;
|v vol. 3.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514745
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24683910
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10713373
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 514745
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 189867
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9965986
|
994 |
|
|
|a 92
|b IZTAP
|