Cargando…

Linear partial differential equations and Fourier theory /

Do you want a rigorous book that remembers where PDEs come from and what they look like? This highly visual introduction to linear PDEs and initial/boundary value problems connects the math to physical reality, all the time providing a rigorous mathematical foundation for all solution methods. Reade...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pivato, Marcus, 1974-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, UK ; New York : Cambridge University Press, 2010.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Half title
  • Title
  • Copyright
  • Dedication
  • Contents
  • Preface
  • Prerequisites and intended audience
  • Conventions in the text
  • Acknowledgements
  • What's good about this book?
  • Illustrations
  • Physical motivation
  • Detailed syllabus
  • Explicit prerequisites for each chapter and section
  • Flat dependency lattice
  • Highly structured exposition, with clear motivation up front
  • Many 8216;practice problems (with complete solutions and source code available online)
  • Challenging exercises without solutions
  • Appropriate rigour
  • Appropriate abstraction
  • Gradual abstraction
  • Expositional clarity
  • Clear and explicit statements of solution techniques
  • Suggested 12-week syllabus
  • Part I Motivating examples and major applications
  • 1 Heat and diffusion
  • 1A Fouriers law
  • 1B The heat equation
  • 1C The Laplace equation
  • 1D The Poisson equation
  • 1E Properties of harmonic functions
  • 1F8727; Transport and diffusion
  • 1G8727; Reaction and diffusion
  • 1H Further reading
  • 1I Practice problems
  • 2 Waves and signals
  • 2A The Laplacian and spherical means
  • 2B The wave equation
  • 2C The telegraph equation
  • 2D Practice problems
  • 3 Quantum mechanics
  • 3A Basic framework
  • 3B The Schr168;odinger equation
  • 3C Stationary Schr168;odinger equation
  • 3D Further reading
  • 3E Practice problems
  • Part II General theory
  • 4 Linear partial differential equations
  • 4A Functions and vectors
  • 4B Linear operators
  • 4C Homogeneous vs. nonhomogeneous
  • 4D Practice problems
  • 5 Classification of PDEs and problem types
  • 5A Evolution vs. nonevolution equations
  • 5B Initial value problems
  • 5C Boundary value problems
  • 5D Uniqueness of solutions
  • 5E8727; Classification of second-order linear PDEs
  • 5F Practice problems
  • Part III Fourier series on bounded domains
  • 6 Some functional analysis
  • 6A Inner products
  • 6B L2-space
  • 6C8727; More about L2-space
  • 6D Orthogonality
  • 6E Convergence concepts
  • 6F Orthogonal and orthonormal bases
  • 6G Further reading
  • 6H Practice problems
  • 7 Fourier sine series and cosine series
  • 7A Fourier (co)sine series on [0, 960;]
  • 7B Fourier (co)sine series on [0,L]
  • 7C Computing Fourier (co)sine coefficients
  • 7D Practice problems
  • 8 Real Fourier series and complex Fourier series
  • 8A Real Fourier series on [8722;960;, 960;]
  • 8B Computing real Fourier coefficients
  • 8C Relation between (co)sine series and real series
  • 8D Complex Fourier series
  • 9 Multidimensional Fourier series
  • 9A
  • 9B
  • 9C Practice problems
  • 10 Proofs of the Fourier convergence theorems
  • 10A Bessel, Riemann, and Lebesgue
  • 10B Pointwise convergence
  • 10C Uniform convergence
  • 10D L2-convergence
  • 10D(i) Integrable functions and step functions in L2[8722;960;, 960;]
  • 10D(ii) Convolutions and mollifiers
  • 10D(iii) Proofs of Theorems 8A.1(a) and 10D.1
  • Part IV BVP solutions via eigenfunction expansions
  • 11 Boundary value problems on a line segment
  • 11A The heat equation on a line segment
  • 11B The wave equation on a line (the vibrating string)
  • 11C The Poisson problem on a line segment
  • 11D Practice problems
  • 1.