Cargando…

Convex optimization in signal processing and communications /

Over the past two decades there have been significant advances in the field of optimization. In particular, convex optimization has emerged as a powerful signal processing tool, and the variety of applications continues to grow rapidly. This book, written by a team of leading experts, sets out the t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Palomar, Daniel P., Eldar, Yonina C.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, ©2010.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Automatic code generation for real-time convex optimization / Jacob Mattingley and Stephen Boyd
  • 2. Gradient-based algorithmswith applications to signal-recovery problems / Amir Beck and Marc Teboulle
  • 3. Graphical models of autoregressive processes / Jitkomut Songsiri, Joachim Dahl and Lieven Vandenberghe
  • 4. SDP relaxation of homogeneous quadratic optimization: approximation bounds and applications / Zhi-Quan Luo and Tsung-Hui Chang
  • 5. Probabilistic analysis of semidefinite relaxation detectors for multiple-input, multiple-output systems / Anthony Man-Cho So and Yinyu Ye
  • 6. Semidefinite programming, matrix decomposition, and radar code design / Yongwei Huang, Antonio De Maio and Shuzhong Zhang
  • 7. Convex analysis for non-negative blind source separation with application in imaging / Wing-Kin Ma, Tsung-Han Chan, Chong-Yung Chi and Vue Wang
  • 8. Optimization techniques in modern sampling theory / Tomer Michaeli and Yonina C. Eldar
  • 9. Robust broadband adaptive beamforming using convex optimization / Michael Rubsamen, Amr El-Keyi, Alex B. Gershman and Thia Kirubarajan
  • 10. Cooperative distributed multi-agentoptimization / Angelia Nedic and Asuman Ozdaglar
  • 11. Competitive optimization of cognitive radio MIMO systems via game theory / Gesualso Scutari, Daniel P. Palomar and Sergio Barbarossa
  • 12. Nash equilibria: the variational approach / Francisco Facchinei and Jong-Shi Pang.