Statistical machine translation /
"The field of machine translation has recently been energized by the emergence of statistical techniques, which have brought the dream of automatic language translation closer to reality. This class-tested textbook, authored by an active researcher in the field, provides a gentle and accessible...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
©2010.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-title
- Title
- Copyright
- Dedication
- Contents
- Preface
- Part I Foundations
- Chapter 1 Introduction
- 1.1 Overview
- 1.2 History of Machine Translation
- 1.3 Applications
- 1.4 Available Resources
- 1.5 Summary
- Chapter 2 Words, Sentences, Corpora
- 2.1 Words
- 2.2 Sentences
- 2.3 Corpora
- 2.4 Summary
- Chapter 3 Probability Theory
- 3.1 Estimating Probability Distributions
- 3.2 Calculating Probability Distributions
- 3.3 Properties of Probability Distributions
- 3.4 Summary
- Part II Core Methods
- Chapter 4 Word-Based Models
- 4.1 Machine Translation by Translating Words
- 4.2 Learning Lexical Translation Models
- 4.3 Ensuring Fluent Output
- 4.4 Higher IBM Models
- 4.5 Word Alignment
- 4.6 Summary
- Chapter 5 Phrase-Based Models
- 5.1 Standard Model
- 5.2 Learning a Phrase Translation Table
- 5.3 Extensions to the Translation Model
- 5.4 Extensions to the Reordering Model
- 5.5 EM Training of Phrase-Based Models
- 5.6 Summary
- Chapter 6 Decoding
- 6.1 Translation Process
- 6.2 Beam Search
- 6.3 Future Cost Estimation
- 6.4 Other Decoding Algorithms
- 6.5 Summary
- Chapter 7 Language Models
- 7.1 N-Gram Language Models
- 7.2 Count Smoothing
- 7.3 Interpolation and Back-off
- 7.4 Managing the Size of the Model
- 7.5 Summary
- Chapter 8 Evaluation
- 8.1 Manual Evaluation
- 8.2 Automatic Evaluation
- 8.3 Hypothesis Testing
- 8.4 Task-Oriented Evaluation
- 8.5 Summary
- Part III Advanced Topics
- Chapter 9 Discriminative Training
- 9.1 Finding Candidate Translations
- 9.2 Principles of Discriminative Methods
- 9.3 Parameter Tuning
- 9.4 Large-Scale Discriminative Training
- 9.5 Posterior Methods and System Combination
- 9.6 Summary
- Chapter 10 Integrating Linguistic Information
- 10.1 Transliteration
- 10.2 Morphology
- 10.3 Syntactic Restructuring
- 10.4 Syntactic Features
- 10.5 Factored Translation Models
- 10.6 Summary
- Chapter 11 Tree-Based Models
- 11.1 Synchronous Grammars
- 11.2 Learning Synchronous Grammars
- 11.3 Decoding by Parsing
- 11.4 Summary
- Bibliography
- Author Index
- Index.