|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn646768730 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
070920s2007 enk ob 001 0 eng d |
010 |
|
|
|z 2007039136
|
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d OCLCQ
|d N$T
|d IDEBK
|d OCLCQ
|d OCLCO
|d RBN
|d OCLCF
|d OCLCQ
|d YDXCP
|d STF
|d OCLCQ
|d LOA
|d COCUF
|d AGLDB
|d MOR
|d CCO
|d PIFAG
|d OCLCQ
|d COO
|d WRM
|d OCLCQ
|d VTS
|d NRAMU
|d VT2
|d OCLCQ
|d WYU
|d LEAUB
|d UKAHL
|d VLY
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 262524052
|a 767137939
|a 769365676
|a 1162187451
|a 1241829211
|a 1290117323
|a 1300653053
|
020 |
|
|
|a 9781860949715
|q (electronic bk.)
|
020 |
|
|
|a 1860949711
|q (electronic bk.)
|
020 |
|
|
|z 9781860949708
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 1860949703
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|a 1281869465
|
020 |
|
|
|a 9781281869463
|
020 |
|
|
|a 9786611869465
|
020 |
|
|
|a 6611869468
|
029 |
1 |
|
|a AU@
|b 000051412925
|
029 |
1 |
|
|a DEBBG
|b BV043152319
|
029 |
1 |
|
|a DEBSZ
|b 422095621
|
029 |
1 |
|
|a NZ1
|b 13518437
|
035 |
|
|
|a (OCoLC)646768730
|z (OCoLC)262524052
|z (OCoLC)767137939
|z (OCoLC)769365676
|z (OCoLC)1162187451
|z (OCoLC)1241829211
|z (OCoLC)1290117323
|z (OCoLC)1300653053
|
050 |
|
4 |
|a QA353.K47
|b S36 2007eb
|
072 |
|
7 |
|a MAT
|x 037000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.7223
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Schmid, Peter,
|d 1941-
|
245 |
1 |
4 |
|a The solution of the k(GV) problem /
|c Peter Schmid.
|
260 |
|
|
|a London :
|b Imperial College Press ;
|a Singapore ;
|a Hackensack, NJ :
|b Distributed by World Scientific Pub.,
|c ©2007.
|
300 |
|
|
|a 1 online resource (xiv, 232 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a ICP advanced texts in mathematics ;
|v v. 4
|
504 |
|
|
|a Includes bibliographical references (pages 225-229) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a 1. Conjugacy classes, characters, and Clifford Theory -- 2. Blocks of characters and Brauer's k(B) problem -- 3. The k(GV) problem -- 4. Symplectic and orthogonal modules -- 5. Real vectors -- 6. Reduced pairs of extraspecial type -- 7. Reduced pairs of quasisimple type -- 8. Modules without real vectors -- 9. Class numbers of permutation groups -- 10. The final stages of the proof -- 11. Possibilities for k(GV) =
|
520 |
|
|
|a The <i>k(GV)</i> conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product <i>GV</i> is bounded above by the order of <i>V</i>. Here <i>V</i> is a finite vector space and <i>G</i> a subgroup of <i>GL(V)</i> of order prime to that of <i>V</i>. It may be regarded as the special case of Brauer's celebrated <i>k(B)</i> problem dealing with <i>p</i>-blocks <i>B</i> of p-solvable groups (<i>p</i> a prime). Whereas Brauer's problem is still open in its generality, the <i>k(GV)</i> problem has recently been solved, completing the work of a series of aut.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Kernel functions.
|
650 |
|
6 |
|a Noyaux (Mathématiques)
|
650 |
|
7 |
|a MATHEMATICS
|x Functional Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Kernel functions
|2 fast
|
710 |
2 |
|
|a Imperial College of Science, Technology and Medicine.
|
776 |
0 |
8 |
|i Print version:
|a Schmid, Peter, 1941-
|t Solution of the k(GV) problem.
|d London : Imperial College Press ; Singapore ; Hackensack, NJ : Distributed by World Scientific Pub., ©2007
|w (DLC) 2007039136
|
830 |
|
0 |
|a Imperial College Press advanced texts in mathematics ;
|v v. 4.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236042
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24683116
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10255784
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 236042
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2891818
|
994 |
|
|
|a 92
|b IZTAP
|