Quasi-orthogonal space-time block code /
"Quasi-Orthogonal Space-Time Block Code" presents an up-to-date, comprehensive and in-depth discussion of an important emerging class of space-time codes, called the Quasi-Orthogonal STBC (QO-STBC). Used in Multiple-Input Multiple-Output (MIMO) communication systems, they provide transmit...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London ; Imperial College Press ; Hackensack, NJ :
Distributed by World Scientific,
©2007.
|
Colección: | Communications and signal processing (London, England) ;
v. 2. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- Foreword
- 1 . Introduction of MIMO Channel and Space-Time Block Code
- 1.1 MIMO Channel for Wireless Communications
- 1.2 Transmit Diversity with Space-Time Block Code
- 1.3 Notations and Abbreviations
- 1.4 Signal Model of MIMO Channel and STBC
- 1.4.1 Signal model of MIMO channel
- 1.4.2 Signal model of STBC
- 1.5 Design Criteria and Performance Measure of STBC
- 2 . Orthogonal and Quasi-Orthogonal Space-Time Block Code
- 2.1 Orthogonal Space-Time Block Code
- 2.1.1 Benefits of 0-STBC
- 2.1.2 Background of amicable orthogonal design
- 2.1.3 Construction of 0-STBC and its rate limitation
- 2.2 Quasi-Orthogonal Space-Time Block Code
- 2.2.1 Approaching capacity with low decoding complexity
- 2.2.2 Performance optimization of QO-STBC
- 2.2.3 Remark
- 3 . Insights of QO-STBC
- 3.1 Algebraic Structure of QO-STBC
- 3.1.1 Decoding complexity of a QO-STBC
- 3.1.2 Maximal symbol-wise diversity of a QO-STBC
- 3.2 Generalized Decoding Framework of QO-STBC
- 3.3 Impact of Constellation Rotation on the Decoding Complexity of QO-STBC
- 3.3.1 Simplified QO-STBC model with real symbols only
- 3.3.2 Decoding complexity of QO-STBC with CR
- 3.4 Group-Constrained Linear Transformation
- 3.4.1 Definition of GCLT
- 3.4.2 Optimization of GCLT parameters
- 3.4.3 Performance comparison
- 3.5 Chapter Summary
- 4 . Quasi-Orthogonal Space-Time Block Code with Minimum Decoding Complexity
- 4.1 Algebraic Structure of MDC-QOSTBC
- 4.2 Square MDC-QOSTBC Design
- 4.2.1 Definition of preferred AOD pair
- 4.2.2 Relationship between MDC-QOSTBC and AOD through preferred AOD pair
- 4.2.3 Lower bound on the code rate for square design
- 4.2.4 Construction of preferred AOD pair
- 4.3 Construction of MDC-QOSTBC from 0-STBC
- 4.3.1 Construction method
- 4.3.2 Performance optimization
- 4.3.3 Non-square MDC-QOSTBC design
- 4.4 Performance Results
- 4.5 Chapter Summary
- 5 . Differential QO-STBC
- 5.1 DSTM Codeword Model and Design Criteria
- 5.2 Unitary DSTM Based on QO-STBC
- 5.2.1 Literature review
- 5.2.2 Signal model of unitary DSTM scheme
- 5.2.3 Double-symbol-decodable unitary DSTM
- 5.2.4 Performance comparison
- 5.2.5 Section summary
- 5.3 Quasi-Unitary DSTM Based on MDC-QOSTBC
- 5.3.1 Literature review
- 5.3.2 Signal model of quasi-unitary DSTM scheme
- 5.3.3 Single-symbol-decodable quasi-unitary DSTM
- 5.4 Chapter Summary
- 6 . Rate. Complexity and Diversity Trade-off in QO-STBC
- 6.1 QO-STBC with Rate 5 1
- 6.1.1 Introduction
- 6.1.2 Full-rate 4Gp-QOSTBC
- 6.1.3 Rate-complexity-diversity tradeoff
- 6.1.4 Section summary
- 6.2 QO-STBC with Rate> 1
- 6.2.1 Introduction
- 6.2.2 Code search methodology
- 6.2.3 Graph modelling and modified depth first search for implementing step (b)
- 6.2.4 Code search results
- 6.2.5 Section summary
- 6.3 Chapter Summary
- 7 . Other Developments and Applications of QO-STBC
- 7.1 Other Developments of QO-STBC
- 7.1.1 Closed-loop QO-STBC
- 7.1.2 Concatenation of QO-STBC with error correction code
- 7.1.3 Super space-time trellis code based on QO-STBC
- 7.1.4 QO-STBC in frequency selective fading channel
- 7.2 QO-STBC in Communication Standards
- 8 . Conclusions
- APPENDIX A
- APPENDIX B
- BIBLIOGRAPHY
- INDEX.